A Practical Guide to Sentiment Analysis

Sentiment analysis research has been started long back and recently it is one of the demanding research topics. Research activities on Sentiment Analysis in natural language texts and other media are gaining ground with full swing. But, till date, no concise set of factors has been yet defined that really affects how writers sentiment i.e., broadly human sentiment is expressed, perceived, recognized, processed, and interpreted in natural languages. The existing reported solutions or the available systems are still far from perfect or fail to meet the satisfaction level of the end users. The reasons may be that there are dozens of conceptual rules that govern sentiment and even there are possibly unlimited clues that can convey these concepts from realization to practical implementation. Therefore, the main aim of this book is to provide a feasible research platform to our ambitious researchers towards developing the practical solutions that will be indeed beneficial for our society, business and future researches as well.

[1]  Yejin Choi,et al.  Syntactic Stylometry for Deception Detection , 2012, ACL.

[2]  Thomas Hugh Feeley,et al.  Individual and Small Group Accuracy in Judging Truthful and Deceptive Communication , 2004 .

[3]  Erik Cambria,et al.  The CLSA Model: A Novel Framework for Concept-Level Sentiment Analysis , 2015, CICLing.

[4]  Mauro Dragoni,et al.  A Fuzzy System for Concept-Level Sentiment Analysis , 2014, SemWebEval@ESWC.

[5]  Dilek Z. Hakkani-Tür,et al.  A Hybrid Hierarchical Model for Multi-Document Summarization , 2010, ACL.

[6]  Chong Wang,et al.  Collaborative topic modeling for recommending scientific articles , 2011, KDD.

[7]  P. Wilson,et al.  The Nature of Emotions , 2012 .

[8]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[9]  J. Pennebaker,et al.  Lying Words: Predicting Deception from Linguistic Styles , 2003, Personality & social psychology bulletin.

[10]  Erik Cambria,et al.  Sentiment Data Flow Analysis by Means of Dynamic Linguistic Patterns , 2015, IEEE Computational Intelligence Magazine.

[11]  Shiwen Yu,et al.  Using Pointwise Mutual Information to Identify Implicit Features in Customer Reviews , 2006, ICCPOL.

[12]  Raymond Y. K. Lau,et al.  Toward a Language Modeling Approach for Consumer Review Spam Detection , 2010, 2010 IEEE 7th International Conference on E-Business Engineering.

[13]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[14]  Peter D. Turney Semantic Composition and Decomposition: From Recognition to Generation , 2014, ArXiv.

[15]  J. Pennebaker,et al.  The Psychological Meaning of Words: LIWC and Computerized Text Analysis Methods , 2010 .

[16]  Zhenhua Wang,et al.  Sumblr: continuous summarization of evolving tweet streams , 2013, SIGIR.

[17]  Muazzam Ahmed Siddiqui,et al.  Building an Arabic Sentiment Lexicon Using Semi-supervised Learning , 2014, J. King Saud Univ. Comput. Inf. Sci..

[18]  Tony Veale,et al.  Detecting Ironic Intent in Creative Comparisons , 2010, ECAI.

[19]  Saif Mohammad,et al.  Stance and Sentiment in Tweets , 2016, ACM Trans. Internet Techn..

[20]  Vasudeva Varma,et al.  Sentence Position revisited: A robust light-weight Update Summarization ‘baseline’ Algorithm , 2009 .

[21]  Chu-Ren Huang,et al.  Extracting Chinese Product Features: Representing a Sequence by a Set of Skip-Bigrams , 2012, CLSW.

[22]  Marshall S. Smith,et al.  The general inquirer: A computer approach to content analysis. , 1967 .

[23]  Joel D. Martin,et al.  Sentiment, emotion, purpose, and style in electoral tweets , 2015, Inf. Process. Manag..

[24]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Brendan T. O'Connor,et al.  From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series , 2010, ICWSM.

[26]  Erik Cambria,et al.  GECKA: Game Engine for Commonsense Knowledge Acquisition , 2015, FLAIRS.

[27]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[28]  Paolo Gastaldo,et al.  Sentiment-Oriented Information Retrieval: Affective Analysis of Documents Based on the SenticNet Framework , 2016, Sentiment Analysis and Ontology Engineering.

[29]  Anthony C. Boucouvalas,et al.  Representing Emotional Momentum within Expressive Internet Communication , 2006, EuroIMSA.

[30]  Mitsuru Ishizuka,et al.  Emotion Estimation and Reasoning Based on Affective Textual Interaction , 2005, ACII.

[31]  Saif Mohammad,et al.  SemEval-2012 Task 2: Measuring Degrees of Relational Similarity , 2012, *SEMEVAL.

[32]  Saif Mohammad,et al.  Tracking Sentiment in Mail: How Genders Differ on Emotional Axes , 2011, WASSA@ACL.

[33]  Kathleen R. McKeown,et al.  Columbia multi-document summarization : Approach and evaluation , 2001 .

[34]  Preslav Nakov,et al.  SemEval-2015 Task 10: Sentiment Analysis in Twitter , 2015, *SEMEVAL.

[35]  R. Valencia-García,et al.  Seeing through Deception: A Computational Approach to Deceit Detection in Spanish Written Communication , 2013 .

[36]  Ivan Titov,et al.  A Joint Model of Text and Aspect Ratings for Sentiment Summarization , 2008, ACL.

[37]  Chris Mellish,et al.  Evaluating Centering-Based Metrics of Coherence , 2004, ACL.

[38]  Suk Hwan Lim,et al.  Extracting and Ranking Product Features in Opinion Documents , 2010, COLING.

[39]  Yue Lu,et al.  Automatic construction of a context-aware sentiment lexicon: an optimization approach , 2011, WWW.

[40]  Hongfei Yan,et al.  Comparing Twitter and Traditional Media Using Topic Models , 2011, ECIR.

[41]  Graeme Hirst,et al.  Identifying Sexual Predators by SVM Classification with Lexical and Behavioral Features , 2012, CLEF.

[42]  John B. Lowe,et al.  The Berkeley FrameNet Project , 1998, ACL.

[43]  Saif Mohammad,et al.  #Emotional Tweets , 2012, *SEMEVAL.

[44]  Guido Zarrella,et al.  MITRE at SemEval-2016 Task 6: Transfer Learning for Stance Detection , 2016, *SEMEVAL.

[45]  Jiawei Han,et al.  Mining topic-level influence in heterogeneous networks , 2010, CIKM.

[46]  Suresh Manandhar,et al.  SemEval-2014 Task 4: Aspect Based Sentiment Analysis , 2014, *SEMEVAL.

[47]  Paolo Rosso,et al.  Exploring high-level features for detecting cyberpedophilia , 2014, Comput. Speech Lang..

[48]  Rachel O’Connell Cyberspace A TYPOLOGY OF CHILD CYBERSEXPLOITATION AND ONLINE GROOMING PRACTICES , 2003 .

[49]  F ChenStanley,et al.  An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.

[50]  Erik Cambria,et al.  AffectiveSpace 2: Enabling Affective Intuition for Concept-Level Sentiment Analysis , 2015, AAAI.

[51]  Saif Mohammad,et al.  CROWDSOURCING A WORD–EMOTION ASSOCIATION LEXICON , 2013, Comput. Intell..

[52]  Xiaojun Wan,et al.  Using Bilingual Knowledge and Ensemble Techniques for Unsupervised Chinese Sentiment Analysis , 2008, EMNLP.

[53]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[54]  John D. Lafferty,et al.  Dynamic topic models , 2006, ICML.

[55]  Yinglin Wang,et al.  Generating Aspect-oriented Multi-Document Summarization with Event-aspect model , 2011, EMNLP.

[56]  Yue Lu,et al.  Rated aspect summarization of short comments , 2009, WWW '09.

[57]  Saif Mohammad,et al.  Capturing Reliable Fine-Grained Sentiment Associations by Crowdsourcing and Best–Worst Scaling , 2016, NAACL.

[58]  Claire Cardie,et al.  Joint Bilingual Sentiment Classification with Unlabeled Parallel Corpora , 2011, ACL.

[59]  Navneet Kaur,et al.  Opinion mining and sentiment analysis , 2016, 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom).

[60]  Chandan K. Reddy,et al.  Location-specific tweet detection and topic summarization in Twitter , 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013).

[61]  Massimo Poesio,et al.  On the Use of Homogenous Sets of Subjects in Deceptive Language Analysis , 2012 .

[62]  Diana Inkpen,et al.  Detecting Emotion Stimuli in Emotion-Bearing Sentences , 2015, CICLing.

[63]  Alice H. Oh,et al.  Aspect and sentiment unification model for online review analysis , 2011, WSDM '11.

[64]  It Informatika,et al.  International Institute of Information Technology, Hyderabad , 2010 .

[65]  Li Chen,et al.  A Linear-Chain CRF-Based Learning Approach for Web Opinion Mining , 2010, WISE.

[66]  Kang Liu,et al.  Book Review: Sentiment Analysis: Mining Opinions, Sentiments, and Emotions by Bing Liu , 2015, CL.

[67]  Maite Taboada,et al.  Lexicon-Based Methods for Sentiment Analysis , 2011, CL.

[68]  Saif Mohammad,et al.  Sentiment after Translation: A Case-Study on Arabic Social Media Posts , 2015, NAACL.

[69]  Claire Cardie,et al.  Negative Deceptive Opinion Spam , 2013, NAACL.

[70]  Harith Alani,et al.  Detecting Child Grooming Behaviour Patterns on Social Media , 2014, SocInfo.

[71]  Fabio Crestani,et al.  Overview of the International Sexual Predator Identification Competition at PAN-2012 , 2012, CLEF.

[72]  Johan Bollen,et al.  Twitter mood predicts the stock market , 2010, J. Comput. Sci..

[73]  Juan David Velásquez,et al.  Modeling Emotions and Other Motivations in Synthetic Agents , 1997, AAAI/IAAI.

[74]  English Corpora,et al.  Cross-Linguistic Sentiment Analysis: From English to Spanish , 2009 .

[75]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[76]  Huan Liu,et al.  Unsupervised sentiment analysis with emotional signals , 2013, WWW.

[77]  Erik Cambria,et al.  Affective Common Sense Knowledge Acquisition for Sentiment Analysis , 2012, LREC.

[78]  Berkant Barla Cambazoglu,et al.  Chat mining: Predicting user and message attributes in computer-mediated communication , 2008, Inf. Process. Manag..

[79]  Saif Mohammad,et al.  Sentiment Analysis of Short Informal Texts , 2014, J. Artif. Intell. Res..

[80]  Saif Mohammad,et al.  Generating High-Coverage Semantic Orientation Lexicons From Overtly Marked Words and a Thesaurus , 2009, EMNLP.

[81]  Carlo Strapparava,et al.  WordNet Affect: an Affective Extension of WordNet , 2004, LREC.

[82]  King-Ip Lin,et al.  Review spam detector with rating consistency check , 2013, ACMSE '13.

[83]  Hongfei Yan,et al.  Jointly Modeling Aspects and Opinions with a MaxEnt-LDA Hybrid , 2010, EMNLP.

[84]  Tao Li,et al.  Multi-Document Summarization via the Minimum Dominating Set , 2010, COLING.

[85]  Phil Blunsom,et al.  A Convolutional Neural Network for Modelling Sentences , 2014, ACL.

[86]  Bernard Widrow,et al.  New Trends of Learning in Computational Intelligence (Part II) [Guest Editorial] , 2015, IEEE Comput. Intell. Mag..

[87]  Alistair Kennedy,et al.  Sentiment Classification of Movie and Product Reviews Using Contextual Valence Shifters , 2005 .

[88]  Kevin Duh,et al.  Is Machine Translation Ripe for Cross-Lingual Sentiment Classification? , 2011, ACL.

[89]  Hiroya Takamura,et al.  Text Summarization Model based on Maximum Coverage Problem and its Variant , 2008 .

[90]  Eric T. Nalisnick,et al.  Character-to-Character Sentiment Analysis in Shakespeare's Plays , 2013, ACL.

[91]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[92]  Oren Etzioni,et al.  Extracting Product Features and Opinions from Reviews , 2005, HLT.

[93]  Janyce Wiebe,et al.  Sentiment Propagation via Implicature Constraints , 2014, EACL.

[94]  Carlo Strapparava,et al.  SemEval-2007 Task 14: Affective Text , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[95]  Kimberly D. Voll,et al.  Extracting sentiment as a function of discourse structure and topicality , 2008 .

[96]  P. Davies The American heritage dictionary of the English language , 1981 .

[97]  R. Ratcliff,et al.  Inference during reading. , 1992, Psychological review.

[98]  Michel Minoux,et al.  Accelerated greedy algorithms for maximizing submodular set functions , 1978 .

[99]  Daniel Dajun Zeng,et al.  Mining Fine Grained Opinions by Using Probabilistic Models and Domain Knowledge , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[100]  Paolo Rosso,et al.  Detection of Opinion Spam with Character n-grams , 2015, CICLing.

[101]  Jeffrey F. Cohn,et al.  The Timing of Facial Motion in posed and Spontaneous Smiles , 2003, Int. J. Wavelets Multiresolution Inf. Process..

[102]  Claire Cardie,et al.  Query-Focused Opinion Summarization for User-Generated Content , 2014, COLING.

[103]  Oren Etzioni,et al.  Towards Coherent Multi-Document Summarization , 2013, NAACL.

[104]  U. Berkeley Exploring Content Models for Multi-Document Summarization , 2018 .

[105]  M. Zuckerman Verbal and nonverbal communication of deception , 1981 .

[106]  Thorsten Joachims,et al.  Temporal corpus summarization using submodular word coverage , 2012, CIKM '12.

[107]  Edward Y. Chang,et al.  PLDA: Parallel Latent Dirichlet Allocation for Large-Scale Applications , 2009, AAIM.

[108]  J. Russell A circumplex model of affect. , 1980 .

[109]  James H. Martin,et al.  Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition , 2000 .

[110]  Yanghui Rao,et al.  Sentiment topic models for social emotion mining , 2014, Inf. Sci..

[111]  Dragomir R. Radev,et al.  Citation Summarization Through Keyphrase Extraction , 2010, COLING.

[112]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[113]  Saif Mohammad,et al.  Sentiment Composition of Words with Opposing Polarities , 2016, NAACL.

[114]  Erik Cambria,et al.  Common Sense Knowledge for Handwritten Chinese Text Recognition , 2013, Cognitive Computation.

[115]  Swapna Somasundaran,et al.  Recognizing Stances in Online Debates , 2009, ACL.

[116]  Aldert Vrij,et al.  Detecting lies and deceit: Pitfalls and opportunities, 2nd ed. , 2008 .

[117]  Erik Cambria,et al.  Enhancing Business Intelligence by Means of Suggestive Reviews , 2014, TheScientificWorldJournal.

[118]  Vasudeva Varma,et al.  Generating Personalized Summaries Using Publicly Available Web Documents , 2008, 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[119]  Deepayan Chakrabarti,et al.  Event Summarization Using Tweets , 2011, ICWSM.

[120]  Vasudeva Varma,et al.  Capturing Sentence Prior for Query-Based Multi-Document Summarization , 2007, RIAO.

[121]  P. Ekman An argument for basic emotions , 1992 .

[122]  Saif Mohammad,et al.  SemEval-2016 Task 6: Detecting Stance in Tweets , 2016, *SEMEVAL.

[123]  Yue Lu,et al.  Latent aspect rating analysis without aspect keyword supervision , 2011, KDD.

[124]  Kathleen R. McKeown,et al.  Predicting the semantic orientation of adjectives , 1997 .

[125]  Bo Pang,et al.  A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts , 2004, ACL.

[126]  Hinrich Schütze,et al.  Automatic generation of short informative sentiment summaries , 2012, EACL.

[127]  Richard C. W. Hall,et al.  A Profile of Pedophilia: Definition, Characteristics of Offenders, Recidivism, Treatment Outcomes, and Forensic Issues , 2009 .

[128]  Ponnurangam Kumaraguru,et al.  Characterizing Pedophile Conversations on the Internet using Online Grooming , 2012, ArXiv.

[129]  Rada Mihalcea,et al.  Learning Multilingual Subjective Language via Cross-Lingual Projections , 2007, ACL.

[130]  Megha Agrawal,et al.  Characterizing Geographic Variation in Well-Being Using Tweets , 2013, ICWSM.

[131]  Felipe Bravo-Marquez,et al.  Meta-level sentiment models for big social data analysis , 2014, Knowl. Based Syst..

[132]  David E. Losada,et al.  An empirical study of sentence features for subjectivity and polarity classification , 2014, Inf. Sci..

[133]  Pushpak Bhattacharyya,et al.  A Fall-back Strategy for Sentiment Analysis in Hindi: a Case Study , 2010 .

[134]  ChengXiang Zhai,et al.  Comprehensive Review of Opinion Summarization , 2011 .

[135]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[136]  Preslav Nakov,et al.  SemEval-2014 Task 9: Sentiment Analysis in Twitter , 2014, *SEMEVAL.

[137]  Raymond H. Putra,et al.  Support or Oppose? Classifying Positions in Online Debates from Reply Activities and Opinion Expressions , 2010, COLING.

[138]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[139]  Eric P. Xing,et al.  MedLDA: maximum margin supervised topic models for regression and classification , 2009, ICML '09.

[140]  Xavier Carreras,et al.  Semantic Role Labeling: An Introduction to the Special Issue , 2008, Computational Linguistics.

[141]  Gwen Littlewort,et al.  Faces of pain: automated measurement of spontaneousallfacial expressions of genuine and posed pain , 2007, ICMI '07.

[142]  Janyce Wiebe,et al.  Benefactive/Malefactive Event and Writer Attitude Annotation , 2013, ACL.

[143]  Claire Cardie,et al.  Compositional Matrix-Space Models for Sentiment Analysis , 2011, EMNLP.

[144]  Yong Qi,et al.  Information Processing and Management , 1984 .

[145]  John D. Lafferty,et al.  A correlated topic model of Science , 2007, 0708.3601.

[146]  Xu Ling,et al.  Topic sentiment mixture: modeling facets and opinions in weblogs , 2007, WWW '07.

[147]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[148]  Pattarachai Lalitrojwong,et al.  Automatic product feature extraction from online product reviews using maximum entropy with lexical and syntactic features , 2008, 2008 IEEE International Conference on Information Reuse and Integration.

[149]  Mehrnoosh Sadrzadeh,et al.  Experimental Support for a Categorical Compositional Distributional Model of Meaning , 2011, EMNLP.

[150]  Jeffrey T. Hancock,et al.  A linguistic analysis of grooming strategies of online child sex offenders: Implications for our understanding of predatory sexual behavior in an increasingly computer-mediated world. , 2015, Child abuse & neglect.

[151]  M. Bradley,et al.  Affective Norms for English Words (ANEW): Instruction Manual and Affective Ratings , 1999 .

[152]  Mike Thelwall,et al.  Sentiment in Twitter events , 2011, J. Assoc. Inf. Sci. Technol..

[153]  Fabrício Benevenuto,et al.  iFeel: a system that compares and combines sentiment analysis methods , 2014, WWW.

[154]  Brian D. Davison,et al.  Empirical study of topic modeling in Twitter , 2010, SOMA '10.

[155]  Pushpak Bhattacharyya,et al.  Harnessing WordNet Senses for Supervised Sentiment Classification , 2011, EMNLP.

[156]  Susan T. Dumais,et al.  Partially labeled topic models for interpretable text mining , 2011, KDD.

[157]  Chaoyi Pang,et al.  Sentiment Analysis for Effective Detection of Cyber Bullying , 2012, APWeb.

[158]  Michel Généreux,et al.  Distinguishing affective states in weblogs , 2006, AAAI 2006.

[159]  John D. Lafferty,et al.  Model-based feedback in the language modeling approach to information retrieval , 2001, CIKM '01.

[160]  Hatice Gunes,et al.  How to distinguish posed from spontaneous smiles using geometric features , 2007, ICMI '07.

[161]  Hongyu Guo,et al.  An Empirical Study on the Effect of Negation Words on Sentiment , 2014, ACL.

[162]  Michael L. Littman,et al.  Measuring praise and criticism: Inference of semantic orientation from association , 2003, TOIS.

[163]  Jure Leskovec,et al.  Predicting positive and negative links in online social networks , 2010, WWW '10.

[164]  Bei Yu,et al.  A cross-collection mixture model for comparative text mining , 2004, KDD.

[165]  Brendan T. O'Connor,et al.  TweetMotif: Exploratory Search and Topic Summarization for Twitter , 2010, ICWSM.

[166]  Hugo Jair Escalante,et al.  A Two-step Approach for Effective Detection of Misbehaving Users in Chats , 2012, CLEF.

[167]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[168]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[169]  S. L. Sporer,et al.  Are Computers Effective Lie Detectors? A Meta-Analysis of Linguistic Cues to Deception , 2015, Personality and social psychology review : an official journal of the Society for Personality and Social Psychology, Inc.

[170]  Martin Ester,et al.  ILDA: interdependent LDA model for learning latent aspects and their ratings from online product reviews , 2011, SIGIR.

[171]  Kevin Makice,et al.  Twitter API: Up and Running: Learn How to Build Applications with the Twitter API , 2009 .

[172]  Bing Liu,et al.  Sentiment Analysis and Opinion Mining , 2012, Synthesis Lectures on Human Language Technologies.

[173]  Tie-Yan Liu,et al.  Learning to rank: from pairwise approach to listwise approach , 2007, ICML '07.

[174]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[175]  Sebastian Rudolph,et al.  Compositional Matrix-Space Models of Language , 2010, ACL.

[176]  Connie S. Barber,et al.  Deconstructing the Online Grooming of Youth: Toward Improved Information Systems for Detection of Online Sexual Predators , 2014, ICIS.

[177]  Bing Liu,et al.  Sentiment Analysis and Subjectivity , 2010, Handbook of Natural Language Processing.

[178]  Daniel Jurafsky,et al.  Automatic Labeling of Semantic Roles , 2002, CL.

[179]  Erik Cambria,et al.  The Hourglass of Emotions , 2011, COST 2102 Training School.

[180]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[181]  Pushpak Bhattacharyya,et al.  Harnessing Context Incongruity for Sarcasm Detection , 2015, ACL.

[182]  Jeffrey T. Hancock,et al.  Deception and design: the impact of communication technology on lying behavior , 2004, CHI.

[183]  Gregory J. Park,et al.  Psychological Language on Twitter Predicts County-Level Heart Disease Mortality , 2015, Psychological science.

[184]  I. Pavlidis,et al.  Forehead Thermal Signature Extraction in Lie Detection , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[185]  Brendan T. O'Connor,et al.  Part-of-Speech Tagging for Twitter: Annotation, Features, and Experiments , 2010, ACL.

[186]  Francis T. Durso,et al.  Computer-mediated communication in collaborative writing , 2002, Comput. Hum. Behav..

[187]  Dong-Hong Ji,et al.  Sentence Ordering based on Cluster Adjacency in Multi-Document Summarization , 2008, IJCNLP.

[188]  Xiaojun Wan,et al.  Co-Training for Cross-Lingual Sentiment Classification , 2009, ACL.

[189]  Saif Mohammad,et al.  Generating Music from Literature , 2014, CLfL@EACL.

[190]  L. Fleischer Telling Lies Clues To Deceit In The Marketplace Politics And Marriage , 2016 .

[191]  Philip S. Yu,et al.  Partially Supervised Classification of Text Documents , 2002, ICML.

[192]  Stefan M. Rüger,et al.  Weakly Supervised Joint Sentiment-Topic Detection from Text , 2012, IEEE Transactions on Knowledge and Data Engineering.

[193]  Clement Levallois,et al.  Umigon: Sentiment Analysis for Tweets Based on Lexicons and Heuristics , 2013 .

[194]  Richard M. Guo Stranger Danger and the Online Social Network , 2008 .

[195]  Yue Lu,et al.  Opinion integration through semi-supervised topic modeling , 2008, WWW.

[196]  Björn W. Schuller,et al.  SenticNet 4: A Semantic Resource for Sentiment Analysis Based on Conceptual Primitives , 2016, COLING.

[197]  Mirella Lapata,et al.  Composition in Distributional Models of Semantics , 2010, Cogn. Sci..

[198]  Saif Mohammad,et al.  NRC-Canada-2014: Detecting Aspects and Sentiment in Customer Reviews , 2014, *SEMEVAL.

[199]  Elena Lloret,et al.  Towards Building a Competitive Opinion Summarization System: Challenges and Keys , 2009, HLT-NAACL.

[200]  Thomas L. Griffiths,et al.  Probabilistic author-topic models for information discovery , 2004, KDD.

[201]  Paolo Gastaldo,et al.  Data intensive review mining for sentiment classification across heterogeneous domains , 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013).

[202]  J. Burgoon,et al.  Interpersonal Deception Theory , 2015 .

[203]  David E. Losada,et al.  Combining Psycho-linguistic, Content-based and Chat-based Features to Detect Predation in Chatrooms , 2014, J. Univers. Comput. Sci..

[204]  Lei Zhang,et al.  Identifying Noun Product Features that Imply Opinions , 2011, ACL.

[205]  Tommaso Fornaciari,et al.  Automatic Detection of Verbal Deception , 2015, Automatic Detection of Verbal Deception.

[206]  Ming Zhou,et al.  Low-Quality Product Review Detection in Opinion Summarization , 2007, EMNLP.

[207]  Peter D. Turney,et al.  Emotions Evoked by Common Words and Phrases: Using Mechanical Turk to Create an Emotion Lexicon , 2010, HLT-NAACL 2010.

[208]  Prem Melville,et al.  Sentiment analysis of blogs by combining lexical knowledge with text classification , 2009, KDD.

[209]  Martin Ester,et al.  FLAME: A Probabilistic Model Combining Aspect Based Opinion Mining and Collaborative Filtering , 2015, WSDM.

[210]  Philip Resnik,et al.  Holistic Sentiment Analysis Across Languages: Multilingual Supervised Latent Dirichlet Allocation , 2010, EMNLP.

[211]  Yuji Matsumoto,et al.  Emotion Classification Using Massive Examples Extracted from the Web , 2008, COLING.

[212]  Dong-Hong Ji,et al.  Positive Unlabeled Learning for Deceptive Reviews Detection , 2014, EMNLP.

[213]  Marko Turpeinen,et al.  Spatial Presence and Emotions during Video Game Playing: Does It Matter with Whom You Play? , 2006, PRESENCE: Teleoperators and Virtual Environments.

[214]  Mirella Lapata,et al.  Probabilistic Text Structuring: Experiments with Sentence Ordering , 2003, ACL.

[215]  Nina Wacholder,et al.  Identifying Sarcasm in Twitter: A Closer Look , 2011, ACL.

[216]  Soo-Min Kim,et al.  Determining the Sentiment of Opinions , 2004, COLING.

[217]  Thomas Hofmann,et al.  Probabilistic latent semantic indexing , 1999, SIGIR '99.

[218]  Vincent Egan,et al.  Perverted Justice: A Content Analysis of the Language Used by Offenders Detected Attempting to Solicit Children for Sex , 2011 .

[219]  Bing Liu,et al.  The utility of linguistic rules in opinion mining , 2007, SIGIR.

[220]  W. Bruce Croft,et al.  A language modeling approach to information retrieval , 1998, SIGIR '98.

[221]  Krishna P. Gummadi,et al.  On the evolution of user interaction in Facebook , 2009, WOSN '09.

[222]  Mário J. Silva,et al.  Clues for detecting irony in user-generated contents: oh...!! it's "so easy" ;-) , 2009, TSA@CIKM.

[223]  Jeffrey T. Hancock,et al.  On Lying and Being Lied To: A Linguistic Analysis of Deception in Computer-Mediated Communication , 2007 .

[224]  Graeme Hirst,et al.  Detecting Deceptive Opinions with Profile Compatibility , 2013, IJCNLP.

[225]  Mitsuru Ishizuka,et al.  Compositionality Principle in Recognition of Fine-Grained Emotions from Text , 2009, ICWSM.

[226]  Dan Klein,et al.  Jointly Learning to Extract and Compress , 2011, ACL.

[227]  Ee-Peng Lim,et al.  Finding unusual review patterns using unexpected rules , 2010, CIKM.

[228]  Pushpak Bhattacharyya,et al.  Measuring Sentiment Annotation Complexity of Text , 2014, ACL.

[229]  Mirella Lapata,et al.  Multiple Aspect Summarization Using Integer Linear Programming , 2012, EMNLP.

[230]  Alessandro Moschitti,et al.  UNITN: Training Deep Convolutional Neural Network for Twitter Sentiment Classification , 2015, *SEMEVAL.

[231]  Marilyn A. Walker,et al.  Collective Stance Classification of Posts in Online Debate Forums , 2014 .

[232]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[233]  Stan Szpakowicz,et al.  Identifying Expressions of Emotion in Text , 2007, TSD.

[234]  J. Russell,et al.  An approach to environmental psychology , 1974 .

[235]  Philip S. Yu,et al.  A holistic lexicon-based approach to opinion mining , 2008, WSDM '08.

[236]  Paolo Gastaldo,et al.  An ELM-based model for affective analogical reasoning , 2015, Neurocomputing.

[237]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[238]  Paolo Rosso,et al.  Detecting positive and negative deceptive opinions using PU-learning , 2015, Inf. Process. Manag..

[239]  Chng Eng Siong,et al.  Modelling Public Sentiment in Twitter: Using Linguistic Patterns to Enhance Supervised Learning , 2015, CICLing.

[240]  Claire Cardie,et al.  Annotating Expressions of Opinions and Emotions in Language , 2005, Lang. Resour. Evaluation.

[241]  Nicolas Nicolov,et al.  Targeting Sentiment Expressions through Supervised Ranking of Linguistic Configurations , 2009, ICWSM.

[242]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[243]  Raymond Y. K. Lau,et al.  Text mining and probabilistic language modeling for online review spam detection , 2012, TMIS.

[244]  Claire Cardie,et al.  Toward Opinion Summarization: Linking the Sources , 2006 .

[245]  Eric T. Nalisnick,et al.  Extracting Sentiment Networks from Shakespeare's Plays , 2013, 2013 12th International Conference on Document Analysis and Recognition.

[246]  James J. Lindsay,et al.  Cues to deception. , 2003, Psychological bulletin.

[247]  Umeshwar Dayal,et al.  Ranking explanatory sentences for opinion summarization , 2013, SIGIR.

[248]  David A. Shamma,et al.  Tweet the debates: understanding community annotation of uncollected sources , 2009, WSM@MM.

[249]  Marilyn A. Walker,et al.  A Corpus for Research on Deliberation and Debate , 2012, LREC.

[250]  Matt Thomas,et al.  Get out the vote: Determining support or opposition from Congressional floor-debate transcripts , 2006, EMNLP.

[251]  Anthony C. Boucouvalas,et al.  Text-to-Emotion Engine for Real Time Internet Communication , 2002 .

[252]  M. Minsky The Society of Mind , 1986 .

[253]  Jure Leskovec,et al.  Hidden factors and hidden topics: understanding rating dimensions with review text , 2013, RecSys.

[254]  Jade Goldstein-Stewart,et al.  The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries , 1998, SIGIR Forum.

[255]  Simon Colton,et al.  Full-FACE Poetry Generation , 2012, ICCC.

[256]  Lei Zhang,et al.  A Survey of Opinion Mining and Sentiment Analysis , 2012, Mining Text Data.

[257]  Suzanne K. Damarin,et al.  The second self: Computers and the human spirit , 1985 .

[258]  Yejin Choi,et al.  Distributional Footprints of Deceptive Product Reviews , 2012, ICWSM.

[259]  Benjamin Ka-Yin T'sou,et al.  CityU-DAC: Disambiguating Sentiment-Ambiguous Adjectives within Context , 2010, SemEval@ACL.

[260]  P. Ekman,et al.  The ability to detect deceit generalizes across different types of high-stake lies. , 1997, Journal of personality and social psychology.

[261]  Murray S. Miron,et al.  Cross-Cultural Universals of Affective Meaning , 1975 .

[262]  Fabio Celli,et al.  The Effect of Personality Type on Deceptive Communication Style , 2013, 2013 European Intelligence and Security Informatics Conference.

[263]  Andrew Y. Ng,et al.  Semantic Compositionality through Recursive Matrix-Vector Spaces , 2012, EMNLP.

[264]  Yue Lu,et al.  Latent aspect rating analysis on review text data: a rating regression approach , 2010, KDD.

[265]  Bing Liu,et al.  Opinion spam and analysis , 2008, WSDM '08.

[266]  Wenji Mao,et al.  Polarity Classification of Public Health Opinions in Chinese , 2008, ISI Workshops.

[267]  Tao Li,et al.  A Non-negative Matrix Tri-factorization Approach to Sentiment Classification with Lexical Prior Knowledge , 2009, ACL.

[268]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[269]  Jane Yung-jen Hsu,et al.  Sentiment Value Propagation for an Integral Sentiment Dictionary Based on Commonsense Knowledge , 2011, 2011 International Conference on Technologies and Applications of Artificial Intelligence.

[270]  Delip Rao,et al.  Semi-Supervised Polarity Lexicon Induction , 2009, EACL.

[271]  Ivan Titov,et al.  Semantic Role Labeling , 2010, HLT-NAACL.

[272]  S. Shivashankar,et al.  Conceptual level similarity measure based review spam detection , 2010, 2010 International Conference on Signal and Image Processing.

[273]  Marilyn A. Walker,et al.  Cats Rule and Dogs Drool!: Classifying Stance in Online Debate , 2011, WASSA@ACL.

[274]  Erik Cambria,et al.  SenticSpace: Visualizing Opinions and Sentiments in a Multi-dimensional Vector Space , 2010, KES.

[275]  Alexander J. Smola,et al.  Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS) , 2014, KDD.

[276]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[277]  John D. Lafferty,et al.  A Study of Smoothing Methods for Language Models Applied to Ad Hoc Information Retrieval , 2017, SIGF.

[278]  Vaibhavi N Patodkar,et al.  Twitter as a Corpus for Sentiment Analysis and Opinion Mining , 2016 .

[279]  Saif M. Mohammad,et al.  The Effect of Negators, Modals, and Degree Adverbs on Sentiment Composition , 2016, WASSA@NAACL-HLT.

[280]  Saif Mohammad,et al.  SemEval-2016 Task 7: Determining Sentiment Intensity of English and Arabic Phrases , 2016, *SEMEVAL.

[281]  Kam-Fai Wong,et al.  Learning Knowledge from Relevant Webpage for Opinion Analysis , 2008, 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[282]  Claire Cardie,et al.  Learning with Compositional Semantics as Structural Inference for Subsentential Sentiment Analysis , 2008, EMNLP.

[283]  Djoerd Hiemstra,et al.  Twenty-One at TREC7: Ad-hoc and Cross-Language Track , 1998, TREC.

[284]  Hao Wu,et al.  Towards online anti-opinion spam: Spotting fake reviews from the review sequence , 2014, 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014).

[285]  Hsin-Hsi Chen,et al.  Opinion Extraction, Summarization and Tracking in News and Blog Corpora , 2006, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.

[286]  Richard Tzong-Han Tsai,et al.  Polarity Detection of Online Reviews Using Sentiment Concepts: NCU IISR Team at ESWC-14 Challenge on Concept-Level Sentiment Analysis , 2014, SemWebEval@ESWC.

[287]  Pattarachai Lalitrojwong,et al.  Mining Feature-Opinion in Online Customer Reviews for Opinion Summarization , 2010, J. Univers. Comput. Sci..

[288]  Dragomir R. Radev,et al.  Multi Document Centroid-based Text Summarization , 2002, ACL 2002.

[289]  Paolo Gastaldo,et al.  A learning scheme based on similarity functions for affective common-sense reasoning , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[290]  Vasudeva Varma,et al.  IIIT Hyderabad in Summarization and Knowledge Base Population at TAC 2011 , 2011, TAC.

[291]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[292]  Verónica Pérez-Rosas,et al.  Automatic detection of deceit in verbal communication , 2013, ICMI '13.

[293]  Saif Mohammad,et al.  NRC-Canada: Building the State-of-the-Art in Sentiment Analysis of Tweets , 2013, *SEMEVAL.

[294]  Erik Cambria,et al.  Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis , 2015 .

[295]  Hua Xu,et al.  Text-based emotion classification using emotion cause extraction , 2014, Expert Syst. Appl..

[296]  David B. Dunson,et al.  Probabilistic topic models , 2012, Commun. ACM.

[297]  Saif Mohammad,et al.  A Practical Guide to Sentiment Annotation: Challenges and Solutions , 2016, WASSA@NAACL-HLT.

[298]  Harith Alani,et al.  Evaluation Datasets for Twitter Sentiment Analysis: A survey and a new dataset, the STS-Gold , 2013, ESSEM@AI*IA.

[299]  Ming Zhou,et al.  Adaptive Multi-Compositionality for Recursive Neural Models with Applications to Sentiment Analysis , 2014, AAAI.

[300]  Andrew McCallum,et al.  Topic Models Conditioned on Arbitrary Features with Dirichlet-multinomial Regression , 2008, UAI.

[301]  William M. Pottenger,et al.  Classification of Emotions in Internet Chat: An Application of Machine Learning Using Speech Phonemes , 2003 .

[302]  Ramesh Nallapati,et al.  Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora , 2009, EMNLP.

[303]  Ashequl Qadir Detecting Opinion Sentences Specific to Product Features in Customer Reviews using Typed Dependency Relations , 2009 .

[304]  Houfeng Wang,et al.  Build Chinese Emotion Lexicons Using A Graph-based Algorithm and Multiple Resources , 2010, COLING.

[305]  Yan Liu,et al.  Towards Twitter context summarization with user influence models , 2013, WSDM.

[306]  Hui Lin,et al.  A Class of Submodular Functions for Document Summarization , 2011, ACL.

[307]  Hugo Liu,et al.  A Corpus-based Approach to Finding Happiness , 2006, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.

[308]  Stephen E. Robertson,et al.  A probabilistic model of information retrieval: development and comparative experiments - Part 2 , 2000, Inf. Process. Manag..

[309]  B. Orme MaxDiff Analysis : Simple Counting , Individual-Level Logit , and HB , 2009 .

[310]  David E. Losada,et al.  A Learning-Based Approach for the Identification of Sexual Predators in Chat Logs , 2012, CLEF.

[311]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[312]  Saif Mohammad,et al.  Portable Features for Classifying Emotional Text , 2012, NAACL.

[313]  John Yearwood,et al.  Detection of child exploiting chats from a mixed chat dataset as a text classification task , 2011, ALTA.

[314]  Andrei Olariu Efficient Online Summarization of Microblogging Streams , 2014, EACL.

[315]  Elena Filatova,et al.  Irony and Sarcasm: Corpus Generation and Analysis Using Crowdsourcing , 2012, LREC.

[316]  Ivan Titov,et al.  Modeling online reviews with multi-grain topic models , 2008, WWW.

[317]  Erik Cambria,et al.  Bridging the Gap between Structured and Unstructured Health-Care Data through Semantics and Sentics , 2011 .

[318]  Claire Cardie,et al.  Finding Deceptive Opinion Spam by Any Stretch of the Imagination , 2011, ACL.

[319]  Pushpak Bhattacharyya,et al.  C-Feel-It: A Sentiment Analyzer for Micro-blogs , 2011, ACL.

[320]  Slava M. Katz,et al.  Estimation of probabilities from sparse data for the language model component of a speech recognizer , 1987, IEEE Trans. Acoust. Speech Signal Process..

[321]  Fei Wang,et al.  A Bootstrapping Method for Extracting Sentiment Words Using Degree Adverb Patterns , 2012, 2012 International Conference on Computer Science and Service System.

[322]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[323]  Preslav Nakov,et al.  SemEval-2013 Task 2: Sentiment Analysis in Twitter , 2013, *SEMEVAL.

[324]  Junhui Wang,et al.  Detecting group review spam , 2011, WWW.

[325]  Pushpak Bhattacharyya,et al.  Lost in Translation: Viability of Machine Translation for Cross Language Sentiment Analysis , 2013, CICLing.

[326]  Erik Cambria Concept-Level Sentiment Analysis , 2014 .

[327]  Stuart Adam Battersby,et al.  Experimenting with Distant Supervision for Emotion Classification , 2012, EACL.

[328]  Yulan He,et al.  Joint sentiment/topic model for sentiment analysis , 2009, CIKM.

[329]  Jay F. Nunamaker,et al.  Detecting Deception through Linguistic Analysis , 2003, ISI.

[330]  Paolo Rosso,et al.  A multidimensional approach for detecting irony in Twitter , 2013, Lang. Resour. Evaluation.

[331]  ChengXiang Zhai,et al.  Discovering evolutionary theme patterns from text: an exploration of temporal text mining , 2005, KDD '05.

[332]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[333]  Paolo Rosso,et al.  Classification of deceptive opinions using a low dimensionality representation , 2015, WASSA@EMNLP.

[334]  David M. Pennock,et al.  Mining the peanut gallery: opinion extraction and semantic classification of product reviews , 2003, WWW '03.

[335]  Mehrnoosh Sadrzadeh,et al.  Multi-Step Regression Learning for Compositional Distributional Semantics , 2013, IWCS.

[336]  Alexander J. Smola,et al.  An architecture for parallel topic models , 2010, Proc. VLDB Endow..

[337]  Vincent Ng,et al.  Stance Classification of Ideological Debates: Data, Models, Features, and Constraints , 2013, IJCNLP.

[338]  David M. Blei,et al.  Supervised Topic Models , 2007, NIPS.

[339]  Xiaotie Deng,et al.  Exploiting Topic based Twitter Sentiment for Stock Prediction , 2013, ACL.

[340]  Dragomir R. Radev,et al.  Extracting Signed Social Networks from Text , 2012, TextGraphs@ACL.

[341]  Arjun Mukherjee,et al.  Spotting Fake Reviews using Positive-Unlabeled Learning , 2014, Computación y Sistemas.

[342]  Dragomir R. Radev,et al.  LexRank: Graph-based Centrality as Salience in Text Summarization , 2004 .

[343]  Carlo Strapparava,et al.  The Lie Detector: Explorations in the Automatic Recognition of Deceptive Language , 2009, ACL.

[344]  Thorsten Brants,et al.  Topic-based document segmentation with probabilistic latent semantic analysis , 2002, CIKM '02.