Metabolic stages, mitochondria and calcium in hypoxic/ischemic brain damage.

[1]  T. Wieloch,et al.  Ultrastructural changes in the hippocampal CA1 region following transient cerebral ischemia: evidence against programmed cell death , 2005, Experimental Brain Research.

[2]  B. Siesjö,et al.  The influence of insulin-induced hypoglycemia on the calcium transients accompanying reversible forebrain ischemia in the rat , 1990, Experimental Brain Research.

[3]  A. Halestrap,et al.  Cyclosporin A binding in mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury , 2004, Molecular and Cellular Biochemistry.

[4]  B. Siesjö,et al.  Influence of hyperglycemia and of hypercapnia on cellular calcium transients during reversible brain ischemia , 2004, Experimental Brain Research.

[5]  B. Siesjö,et al.  Perturbation of cellular energy state in complete ischemia: Relationship to dissipative ion fluxes , 2004, Experimental Brain Research.

[6]  D. Nicholls,et al.  Interactions between mitochondrial bioenergetics and cytoplasmic calcium in cultured cerebellar granule cells. , 2003, Cell calcium.

[7]  S. Mehta The glucose paradox of cerebral ischaemia. , 2003, Journal of postgraduate medicine.

[8]  G. Fiskum,et al.  Cyclosporin A-insensitive Permeability Transition in Brain Mitochondria , 2003, Journal of Biological Chemistry.

[9]  P. Bernardi,et al.  Mitochondria and reperfusion injury , 2003, Basic Research in Cardiology.

[10]  P. Marsden,et al.  Lactate: A Preferred Fuel for Human Brain Metabolism in Vivo , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[11]  D. Nicholls,et al.  The Relationship between Free and Total Calcium Concentrations in the Matrix of Liver and Brain Mitochondria* , 2003, Journal of Biological Chemistry.

[12]  Eng H. Lo,et al.  Neurological diseases: Mechanisms, challenges and opportunities in stroke , 2003, Nature Reviews Neuroscience.

[13]  R. Clark,et al.  To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways , 2003, Progress in Neurobiology.

[14]  T. Weatherby,et al.  Heterogeneity of the calcium‐induced permeability transition in isolated non‐synaptic brain mitochondria , 2002, Journal of neurochemistry.

[15]  Gary Fiskum,et al.  Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax , 2002, Journal of neurochemistry.

[16]  T. Wieloch,et al.  Mitochondrial permeability transition in acute neurodegeneration. , 2002, Biochimie.

[17]  K. Moley,et al.  Hyperglycemia‐induced apoptotic cell death in the mouse blastocyst is dependent on expression of p53 , 2001, Molecular reproduction and development.

[18]  B. Siesjö,et al.  Acidosis promotes the permeability transition in energized mitochondria: implications for reperfusion injury. , 2001, Journal of neurotrauma.

[19]  K. Csiszȧr,et al.  Does long-term glucose infusion reduce brain damage after transient cerebral ischemia? , 2001, Brain Research.

[20]  J. Troppmair,et al.  Independent control of cell survival by Raf-1 and Bcl-2 at the mitochondria , 2001, Oncogene.

[21]  Fengqin Gao,et al.  Novel Role for JNK as a Stress-activated Bcl2 Kinase* , 2001, The Journal of Biological Chemistry.

[22]  P. Bernardi,et al.  Opening of the Mitochondrial Permeability Transition Pore Causes Depletion of Mitochondrial and Cytosolic NAD+and Is a Causative Event in the Death of Myocytes in Postischemic Reperfusion of the Heart* , 2001, The Journal of Biological Chemistry.

[23]  W. Schwindt,et al.  Electron microscopic investigation of rat brain after brief cardiac arrest , 2001, Acta Neuropathologica.

[24]  Y. Tsujimoto,et al.  VDAC regulation by the Bcl-2 family of proteins , 2000, Cell Death and Differentiation.

[25]  A. Buchan,et al.  Apoptosis after experimental stroke: fact or fashion? , 2000, Journal of neurotrauma.

[26]  G. Fiskum Mitochondrial participation in ischemic and traumatic neural cell death. , 2000, Journal of neurotrauma.

[27]  P. Stys,et al.  Important role of reverse Na(+)-Ca(2+) exchange in spinal cord white matter injury at physiological temperature. , 2000, Journal of neurophysiology.

[28]  P. Nicotera Caspase Requirement for Neuronal Apoptosis and Neurodegeneration , 2000, IUBMB life.

[29]  Guido Kroemer,et al.  Mitochondrial control of cell death , 2000, Nature Medicine.

[30]  B. Siesjö,et al.  Characteristics of the Calcium‐Triggered Mitochondrial Permeability Transition in Nonsynaptic Brain Mitochondria , 2000, Journal of neurochemistry.

[31]  S. Scheff,et al.  Continuous Infusion of Cyclosporin A Postinjury Significantly Ameliorates Cortical Damage Following Traumatic Brain Injury , 2000, Experimental Neurology.

[32]  Shuxin Li,et al.  Mechanisms of Ionotropic Glutamate Receptor-Mediated Excitotoxicity in Isolated Spinal Cord White Matter , 2000, The Journal of Neuroscience.

[33]  D. Andrews,et al.  Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator , 2000, Oncogene.

[34]  N. Sims,et al.  Cyclosporin A‐Sensitive Changes in Mitochondrial Glutathione Are an Early Response to Intrastriatal NMDA or Forebrain Ischemia in Rats , 1999, Journal of neurochemistry.

[35]  M. Tseng,et al.  The Glucose Paradox in Cerebral Ischemia: New Insights , 1999, Annals of the New York Academy of Sciences.

[36]  J. Hoek,et al.  Functional Consequences of the Sustained or Transient Activation by Bax of the Mitochondrial Permeability Transition Pore* , 1999, The Journal of Biological Chemistry.

[37]  M. Moskowitz,et al.  Pathobiology of ischaemic stroke: an integrated view , 1999, Trends in Neurosciences.

[38]  B. Siesjö,et al.  Posttreatment with the immunosuppressant cyclosporin A in transient focal ischemia , 1999, Brain Research.

[39]  T. Wieloch,et al.  Blockade of the Mitochondrial Permeability Transition Pore Diminishes Infarct Size in the Rat after Transient Middle Cerebral Artery Occlusion , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[40]  M. Blaustein,et al.  Sodium/calcium exchange: its physiological implications. , 1999, Physiological reviews.

[41]  S. Lipton,et al.  Excitotoxins in Neuronal Apoptosis and Necrosis , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[42]  G. Sutherland,et al.  Electron Microscopic Evidence against Apoptosis as the Mechanism of Neuronal Death in Global Ischemia , 1999, The Journal of Neuroscience.

[43]  U. Tuor,et al.  Cerebral Ischemia Produces Laddered DNA Fragments Distinct from Cardiac Ischemia and Archetypal Apoptosis , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[44]  P. Lipton,et al.  Ischemic cell death in brain neurons. , 1999, Physiological reviews.

[45]  P. Bernardi,et al.  Mitochondrial transport of cations: channels, exchangers, and permeability transition. , 1999, Physiological reviews.

[46]  R. Busto,et al.  Cytochrome C Is Released from Mitochondria Into the Cytosol after Cerebral Anoxia or Ischemia , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[47]  B. Siesjö,et al.  Role and mechanisms of secondary mitochondrial failure. , 1999, Acta neurochirurgica. Supplement.

[48]  T. Sugawara,et al.  Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. , 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  L. Scorrano,et al.  The mitochondrial permeability transition , 2022, BioFactors.

[50]  S. Korsmeyer,et al.  Hyperglycemia induces apoptosis in pre-implantation embryos through cell death effector pathways , 1998, Nature Medicine.

[51]  Ping-An Li,et al.  Amelioration by cyclosporin A of brain damage in transient forebrain ischemia in the rat , 1998, Brain Research.

[52]  G. Fiskum,et al.  Cytochrome c release from brain mitochondria is independent of the mitochondrial permeability transition , 1998, FEBS letters.

[53]  M. Fujimura,et al.  Cytosolic Redistribution of Cytochrome C after Transient Focal Cerebral Ischemia in Rats , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[54]  M. McKenna,et al.  Lactate Transport by Cortical Synaptosomes from Adult Rat Brain: Characterization of Kinetics and Inhibitor Specificity , 1998, Developmental Neuroscience.

[55]  T. Wieloch,et al.  Cyclosporin A, But Not FK 506, Protects Mitochondria and Neurons against Hypoglycemic Damage and Implicates the Mitochondrial Permeability Transition in Cell Death , 1998, The Journal of Neuroscience.

[56]  S. Kuroda,et al.  Calcium metabolism of focal and penumbral tissues in rats subjected to transient middle cerebral artery occlusion , 1998, Experimental Brain Research.

[57]  G. Kroemer,et al.  The Permeability Transition Pore Complex: A Target for Apoptosis Regulation by Caspases and Bcl-2–related Proteins , 1998, The Journal of experimental medicine.

[58]  J. Farber,et al.  The Overexpression of Bax Produces Cell Death upon Induction of the Mitochondrial Permeability Transition* , 1998, The Journal of Biological Chemistry.

[59]  B. Siesjö,et al.  Calcium in ischemic cell death. , 1998, Stroke.

[60]  N. Sims,et al.  Ischemia in Rats , 2002 .

[61]  I. Silver,et al.  Oxygen and ion concentrations in normoxic and hypoxic brain cells. , 1998, Advances in experimental medicine and biology.

[62]  K. Nagata [Brain energy metabolism]. , 1997, Nihon rinsho. Japanese journal of clinical medicine.

[63]  P. Stys,et al.  Mechanisms of calcium and sodium fluxes in anoxic myelinated central nervous system axons , 1997, Neuroscience.

[64]  B. Kristal,et al.  Mitochondrial Permeability Transition in the Central Nervous System: Induction by Calcium Cycling‐Dependent and ‐Independent Pathways , 1997, Journal of neurochemistry.

[65]  G Fiskum,et al.  Neuroprotective effects of acetyl-L-carnitine after stroke in rats. , 1997, Annals of emergency medicine.

[66]  S. Kuroda,et al.  Release of mitochondrial aspartate aminotransferase (mAST) following transient focal cerebral ischemia suggests the opening of a mitochondrial permeability transition pore , 1997 .

[67]  J. Turrens Superoxide Production by the Mitochondrial Respiratory Chain , 1997, Bioscience reports.

[68]  B. Siesjö,et al.  Changes in ionic fluxes during cerebral ischaemia. , 1997, International review of neurobiology.

[69]  B. Siesjö,et al.  Extracellular potassium in a neocortical core area after transient focal ischemia. , 1997, Stroke.

[70]  N. Sims,et al.  Alterations in the glutathione content of mitochondria following short-term forebrain ischemia in rats , 1996, Neuroscience Letters.

[71]  P. Magistretti,et al.  Selective Distribution of Lactate Dehydrogenase Isoenzymes in Neurons and Astrocytes of Human Brain , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[72]  B. Siesjö,et al.  Calcium-related damage in ischemia. , 1996, Life sciences.

[73]  Charles Tator,et al.  Normal and abnormal calcium homeostasis in neurons: a basis for the pathophysiology of traumatic and ischemic central nervous system injury. , 1996, Neurosurgery.

[74]  Paolo Bernardi,et al.  The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal , 1996, Journal of bioenergetics and biomembranes.

[75]  B. Siesjö,et al.  Acidosis-related damage. , 1996, Advances in neurology.

[76]  I. Silver,et al.  Calcium handling by hippocampal neurons under physiologic and pathologic conditions. , 1996, Advances in neurology.

[77]  I. Silver,et al.  The Effect of pH on Glycolysis and Phosphofructokinase Activity in Cultured Cells and Synaptosomes , 1995, Journal of neurochemistry.

[78]  O. Lindvall,et al.  Cyclosporin A dramatically ameliorates CA1 hippocampal damage following transient forebrain ischaemia in the rat. , 1995, Acta physiologica Scandinavica.

[79]  Á. Almeida,et al.  Effect of Reperfusion Following Cerebral Ischaemia on the Activity of the Mitochondrial Respiratory Chain in the Gerbil Brain , 1995, Journal of neurochemistry.

[80]  F. Tegtmeier,et al.  Journal of Cerebral Blood Flow and Metabolism Ion Channel Involvement in Anoxic Depolarization Induced by Cardiac Arrest in Rat Brain , 2022 .

[81]  Á. Almeida,et al.  Changes of Respiratory Chain Activity in Mitochondrial and Synaptosomal Fractions Isolated from the Gerbil Brain After Graded Ischaemia , 1995, Journal of neurochemistry.

[82]  A. Halestrap,et al.  Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. , 1995, The Biochemical journal.

[83]  E. Griffiths Mitochondrial non-specific poresremain closed during cardiac ischaemia, , 1995 .

[84]  N. Sims,et al.  The Calcium Content of Mitochondria from Brain Subregions Following Short‐Term Forebrain Ischemia and Recirculation in the Rat , 1994, Journal of neurochemistry.

[85]  P. Bernardi,et al.  Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane , 1994, Journal of bioenergetics and biomembranes.

[86]  S. Heales,et al.  Effects of 1‐Methyl‐4‐Phenylpyridinium on Isolated Rat Brain Mitochondria: Evidence for a Primary Involvement of Energy Depletion , 1994, Journal of neurochemistry.

[87]  R. Rosenthal,et al.  Postischemic inhibition of cerebral cortex pyruvate dehydrogenase. , 1994, Free radical biology & medicine.

[88]  I. Silver,et al.  Ions and energy in mammalian brain , 1994, Progress in Neurobiology.

[89]  B. Siesjö,et al.  The influence of pH on cellular calcium influx during ischemia , 1994, Brain Research.

[90]  B. Siesjö,et al.  Acidosis Induced by Hypercapnia Exaggerates Ischemic Brain Damage , 1994, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[91]  R. Rosenthal,et al.  Inhibition of postcardiac arrest brain protein oxidation by acetyl-L-carnitine. , 1993, Free radical biology & medicine.

[92]  Charles Tator,et al.  Secondary Ca2+ overload indicates early neuronal injury which precedes staining with viability indicators , 1993, Brain Research.

[93]  B. Siesjö,et al.  Coupling of cellular energy state and ion homeostasis during recovery following brain ischemia , 1993, Brain Research.

[94]  N. Sims,et al.  Journal of Cerebral Blood Flow and Metabolism Selective Reductions in the Activity of the Pyruvate Dehydrogenase Complex in Mitochondria Isolated from Brain Subregions following Forebrain Ischemia in Rats , 2022 .

[95]  I. Silver,et al.  Ion Homeostasis in Rat Brain in vivo: Intra- and Extracellular [Ca2+] and [H+] in the Hippocampus during Recovery from Short-Term, Transient Ischemia , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[96]  B. Siesjö Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment. , 1992, Journal of neurosurgery.

[97]  R. Rosenthal,et al.  Prevention of Postischemic Canine Neurological Injury Through Potentiation of Brain Energy Metabolism by Acetyl‐L‐Carnitine , 1992, Stroke.

[98]  B. Siesjö,et al.  Influence of Ischemia on Blood—Brain and Blood—CSF Calcium Transport , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[99]  Y. Yonekawa,et al.  Changes in major phospholipids of mitochondria during postischemic reperfusion in rat brain. , 1992, Journal of neurosurgery.

[100]  Anders Ekholm,et al.  Extra‐ and Intracellular pH in the Brain During Ischaemia, Related to Tissue Lactate Content in Normo‐and Hypercapnic rats , 1992, The European journal of neuroscience.

[101]  W. Pulsinelli,et al.  The N-methyl-D-aspartate antagonist, MK-801, fails to protect against neuronal damage caused by transient, severe forebrain ischemia in adult rats , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[102]  S. Emoto,et al.  Recovery of Postischemic Brain Metabolism and Function Following Treatment with a Free Radical Scavenger and Platelet‐Activating Factor Antagonists , 1991, Journal of neurochemistry.

[103]  R. Myers,et al.  Delayed decreases in specific brain mitochondrial electron transfer complex activities and cytochrome concentrations following anoxia/ischemia , 1990, Journal of the Neurological Sciences.

[104]  B. Siesjö,et al.  Phosphorylase a and Labile Metabolites During Anoxia: Correlation to Membrane Fluxes of K+ and Ca2+ , 1990, Journal of neurochemistry.

[105]  N. Diemer,et al.  N-methyl-D-aspartate and non-N-methyl-D-aspartate antagonists in global cerebral ischemia. , 1990, Stroke.

[106]  T. Gunter,et al.  Mechanisms by which mitochondria transport calcium. , 1990, The American journal of physiology.

[107]  R. Myers,et al.  Journal of Cerebral Blood Flow and Metabolism Delayed Onset of Neurologic Deterioration following Anoxia/ischemia Coincides with Appearance of Impaired Brain Mitochondrial Respiration and Decreased Cytochrome Oxidase Activity , 2022 .

[108]  I A Silver,et al.  Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo , 1990, The Journal of general physiology.

[109]  T. Wieloch,et al.  Pyruvate Dehydrogenase Activity in the Rat Cerebral Cortex following Cerebral Ischemia , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[110]  I. Silver,et al.  ATP and Brain Function , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[111]  N. Sims,et al.  Altered Mitochondrial Respiration in Selectively Vulnerable Brain Subregions Following Transient Forebrain Ischemia in the Rat , 1987, Journal of neurochemistry.

[112]  G. Mies,et al.  Calcium in the mitochondria following brief ischemia of gerbil brain , 1987, Neuroscience Letters.

[113]  B. Siesjö,et al.  Ischemia in normo- and hyperglycemic rats: effects on brain water and electrolytes. , 1987, Stroke.

[114]  B. Siesjö,et al.  Journal of Cerebral Blood Flow and Metabolism Calcium Accumulation and Neuronal Damage in the Rat Hippocampus following Cerebral Ischemia Operative Procedures , 2022 .

[115]  B. Siesjö,et al.  Changes in Extra- and Intracellular pH in the Brain during and following Ischemia in Hyperglycemic and in Moderately Hypoglycemic Rats , 1986, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[116]  A. Hansen,et al.  Effect of anoxia on ion distribution in the brain. , 1985, Physiological reviews.

[117]  L. Symon,et al.  Extracellular pH, Potassium, and Calcium Activities in Progressive Ischaemia of Rat Cortex , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[118]  A. Hansen,et al.  Extracellular pH Changes during Spreading Depression and Cerebral Ischemia: Mechanisms of Brain pH Regulation , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[119]  W. Moody,et al.  Effects of intracellular H+ on the electrical properties of excitable cells. , 1984, Annual review of neuroscience.

[120]  C. Nicholson Dynamics of the brain cell microenvironment. , 1980, Neurosciences Research Program bulletin.

[121]  B. Siesjö,et al.  Rate of energy utilization in the cerebral cortex of rats. , 1975, Acta physiologica Scandinavica.

[122]  B. Siesjö,et al.  Influence of complete ischemia on glycolytic metabolites, citric acid cycle intermediates, and associated amino acids in the rat cerebral cortex. , 1974, Brain research.

[123]  B. Siesjö,et al.  Changes in energy state and acid-base parameters of the rat brain during complete compression ischemia. , 1974, Brain research.

[124]  R. Ratcheson,et al.  Cerebral metabolic state following complete compression ischemia. , 1974, Brain research.

[125]  O. H. Lowry,et al.  CEREBRAL CARBOHYDRATE METABOLISM DURING ACUTE HYPOXIA AND RECOVERY 1 , 1972, Journal of neurochemistry.

[126]  J J Pysh,et al.  Variations in mitochondrial structure and content of neurons and neuroglia in rat brain: an electron microscopic study. , 1972, Brain research.

[127]  O. H. Lowry,et al.  The role of phosphofructokinase in metabolic regulation. , 1964, Advances in enzyme regulation.

[128]  O. H. Lowry,et al.  EFFECT OF ISCHEMIA ON KNOWN SUBSTRATES AND COFACTORS OF THE GLYCOLYTIC PATHWAY IN BRAIN. , 1964, The Journal of biological chemistry.

[129]  R. A. Lovell,et al.  THE α‐AMINOBUTYRIC ACID AND FACTOR I CONTENT OF BRAIN * , 1963 .

[130]  R. A. Lovell,et al.  THE GAMMA-AMINOBUTYRIC ACID AND FACTOR I CONTENT OF BRAIN. , 1963, Journal of neurochemistry.