An autonomous robot for weed control: design, navigation and control.

In de biologische landbouw worden geen chemische middelen toegepast voor onkruidbestrijding. Een van de grootste knelpunten in de biologische open teelt (bv suikerbieten, uien) is het onkruidprobleem. Voor de onkruidbestrijding tussen de rijen zijn mechanische methodes voor onkruidbestrijding ontwikkeld (zoals bijvoorbeeld een schoffelmachine achter een trekker), maar het verwijderen van onkruid in de rij komt voor een groot deel neer op handmatig wieden omdat er geen goed alternatief is. Handmatig wieden brengt hoge kosten met zich mee en het is vaak moeilijk om voldoende mensen voor dit werk te krijgen. Als het wieden in de rij zou kunnen worden uitgevoerd door een intelligente autonome wieder kan dit een enorme stimulans zijn voor duurzame landbouw. Het doel van dit onderzoek is het realiseren van een intelligente autonome wieder die handmatig wieden kan vervangen. Deze robot moet autonoom een heel perceel kunnen wieden. De eerste stap van het onderzoek was de ontwikkeling van een 'rijdend platform' (foto is beschikbaar). Het voertuig is uitgerust met een dieselmotor en hydraulische transmissie, en heeft onafhankelijke vierwielbesturing en vier onafhankelijk aangedreven wielen. Het onderzoek concentreerde zich verder op autonome navigatie door plantenrijen te volgen met behulp van een camera en op autonome navigatie gebaseerd op RTK-DGPS, waarmee tot op 2 cm nauwkeurig de positie kan worden gemeten. Het onderzoek heeft verder geresulteerd in een praktisch toepasbare generieke besturing voor vierwielbestuurbare voertuigen, waarmee zo’n voertuig nauwkeurig langs een gedefinieerd pad kan worden gestuurd, gebruik maakt van alle vrijheidsgraden. Deze besturing is ook geschikt voor vierwielbestuurbare voertuigen voor andere toepassingen. De robot is autonoom op perceelsniveau, dat wil zeggen dat de robot in staat is met de ontwikkelde navigatie en besturing autonoom over een perceel te navigeren.

[1]  Thomas Hellström,et al.  Requirements and system design for a robot performing selective cleaning in young forest stands , 2006 .

[2]  N. D. Tillett,et al.  Automatic guidance sensors for agricultural field machines:A review , 1991 .

[3]  S. Skogestad Simple analytic rules for model reduction and PID controller tuning , 2004 .

[4]  Raphael Linker,et al.  Path-planning algorithm for vehicles operating in orchards , 2008 .

[5]  Timo Oksanen,et al.  Path planning algorithms for agricultural field machines , 2007 .

[6]  Kazumi Fujimoto,et al.  Obstacle Detection Technology using Sensor Fusion Methods , 2002 .

[7]  Yoshisada Nagasaka,et al.  Autonomous guidance for rice transplanting using global positioning and gyroscopes , 2004 .

[8]  G. Manor AUTOMATIC FIELD MACHINE TECHNOLOGY , 1995 .

[9]  J. N. Wilson,et al.  Guidance of agricultural vehicles - a historical perspective. , 2000 .

[10]  John A. Marchant,et al.  Real-Time Tracking of Plant Rows Using a Hough Transform , 1995, Real Time Imaging.

[11]  N. D. Tillett,et al.  Computer-Vision-based Hoe Guidance for Cereals — an Initial Trial , 1999 .

[12]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[13]  John F. Reid,et al.  Obstacle Detection Using Stereo Vision To Enhance Safety of Autonomous Machines , 2005 .

[14]  J. B. Gerrish,et al.  SELF-STEERING TRACTOR GUIDED BY COMPUTER-VISION , 1997 .

[15]  Matthew. Home An investigation into the design of cultivation systems for inter- and intra-row weed control , 2003 .

[16]  Allan Leck Jensen AGRICULTURAL INFORMATION AND DECISION SUPPORT BY SMS , 2003 .

[17]  George Stephanopoulos,et al.  Chemical Process Control: An Introduction to Theory and Practice , 1983 .

[18]  N. D. Tillett,et al.  Increasing Work Rate in Vision Guided Precision Banded Operations , 2006 .

[19]  S. Christensen,et al.  Real‐time weed detection, decision making and patch spraying in maize, sugarbeet, winter wheat and winter barley , 2003 .

[20]  Dirk Ansorge,et al.  The effect of tyres and a rubber track at high axle loads on soil compaction, Part 1 Single axle-studies , 2007 .

[21]  Björn Åstrand Vision Based Perception for Mechatronic Weed Control , 2005 .

[22]  Noboru Noguchi,et al.  Agricultural automatic guidance research in North America , 2000 .

[23]  C. E. Goering,et al.  Developing an Automatic Steering System for a Hydrostatic Vehicle , 1970 .

[24]  N. D. Tillett,et al.  Navigation and control of an autonomous horticultural robot , 1996 .

[25]  Noboru Noguchi,et al.  Turning Function for Robot Tractor Based on Spline Function , 2001 .

[26]  N. D. Tillett,et al.  A Robotic System for Plant-Scale Husbandry , 1998 .

[27]  T. Bakker Weeding Robot is Autonomous , 2005 .

[28]  Chwan-Lu Tseng,et al.  Feasibility study on application of GSM–SMS technology to field data acquisition , 2006 .

[29]  Arno Ruckelshausen,et al.  The Field Robot Event - An International Design Contest in Agricultural Engineering , 2007 .

[30]  José Blasco,et al.  AE—Automation and Emerging Technologies: Robotic Weed Control using Machine Vision , 2002 .

[31]  R. P Van Zuydam A driver's steering aid for an agricultural implement, based on an electronic map and Real Time Kinematic DGPS , 1999 .

[32]  Claus G. Sørensen,et al.  HortiBot: A System Design of a Robotic Tool Carrier for High-tech Plant Nursing , 2007 .

[33]  B. Ambler,et al.  Automatic ploughing: A tractor guidance system using opto-electronic remote sensing techniques and a microprocessor based controller , 1981 .

[34]  S. Vougioukas,et al.  A two-stage optimal motion planner for autonomous agricultural vehicles , 2006, Precision Agriculture.

[35]  P. O. Bleeker,et al.  Het spanningsveld tussen beheren en beheersen van onkruiden op biologische bedrijven [Gewasbescherming] , 2002 .

[36]  M. Nørremark,et al.  Seed Mapping of Sugar Beet , 2005, Precision Agriculture.

[37]  Georges Bastin,et al.  Structural properties and classification of kinematic and dynamic models of wheeled mobile robots , 1996, IEEE Trans. Robotics Autom..

[38]  J. F. Reid,et al.  An Algorithm for Separating Guidance Information from Row Crop Images , 1988 .

[39]  A. T. Nieuwenhuizen,et al.  Colour based detection of volunteer potatoes as weeds in sugar beet fields using machine vision , 2007, Precision Agriculture.

[40]  Scott A. Shearer,et al.  CONTROLLER AREA NETWORK BASED DISTRIBUTED CONTROL FOR AUTONOMOUS VEHICLES , 2005 .

[41]  Wen-Hsiang Tsai,et al.  Gray-scale hough transform for thick line detection in gray-scale images , 1995, Pattern Recognit..

[42]  J Pawlak,et al.  Agricultural engineering for a better world , 2006 .

[43]  R. Y. van der Weide,et al.  Innovation in mechanical weed control in crop rows , 2008 .

[44]  G. van Straten,et al.  Autonomous navigation in a sugar beet field with a robot , 2008 .

[45]  George E. Meyer,et al.  Shape features for identifying young weeds using image analysis , 1994 .

[46]  Reyer Zwiggelaar,et al.  A review of spectral properties of plants and their potential use for crop/weed discrimination in row-crops , 1998 .

[47]  G. van Straten,et al.  Intra-Row Weed Control: A Mechatronics Approach , 1998 .

[48]  Joachim Müller,et al.  An Autonomous Weeding Robot for Organic Farming , 2005, FSR.

[49]  J. De Baerdemaeker,et al.  Weed Detection Using Canopy Reflection , 2002, Precision Agriculture.

[50]  Michael Happold,et al.  The Demeter System for Automated Harvesting , 2002, Auton. Robots.

[51]  Albert-Jan Baerveldt,et al.  An Agricultural Mobile Robot with Vision-Based Perception for Mechanical Weed Control , 2002, Auton. Robots.

[52]  N. D. Tillett,et al.  A mathematical model of the kinematics of a rotating disc for inter-and intra-row hoeing , 2007 .

[53]  G. van Straten,et al.  A vision based row detection system for sugar beet , 2005 .

[54]  Bradford W. Parkinson,et al.  Precision robotic control of agricultural vehicles on realistic farm trajectories , 1999 .

[55]  K. J. Keesman,et al.  Digital Filters to Integrate Global Positioning System and Dead Reckoning , 1998 .

[56]  P. Burrough,et al.  Principles of geographical information systems , 1998 .

[57]  N. D. Tillett,et al.  Inter-row vision guidance for mechanical weed control in sugar beet , 2002 .

[58]  Stephen W. Searcy,et al.  Measurement of agricultural field location using microwave frequency triangulation. , 1990 .

[59]  J. A. Marchant,et al.  Tracking of row structure in three crops using image analysis , 1996 .

[60]  Kazunobu Ishii,et al.  Development of Robot Tractor Based on RTK-GPS and Gyroscope , 2001 .

[61]  Chang Hyun Choi,et al.  Automatic guidance system for farm tractor , 1988 .

[62]  D. K. Giles,et al.  Precision weed control system for cotton , 2002 .

[63]  G. Polder,et al.  A Mobile Field Robot with Vision-Based Detection of Volunteer Potato Plants in a Corn Crop1 , 2006, Weed Technology.

[64]  H. T. Søgaard,et al.  Determination of crop rows by image analysis without segmentation , 2003 .

[65]  P. D. Ayers,et al.  DESIGN OF CONTROLLERS FOR NONLINEAR ELECTROHYDRAULIC SYSTEMS WITH TIME DELAYS , 1991 .

[66]  Albert-Jan Baerveldt,et al.  Plant recognition and localization using context information , 2004 .

[67]  Michael Lee O'Connor Carrier Phase Differential GPS for Automatic Control of Land Vehicles , 1997 .

[68]  V.T.J.M. Achten,et al.  CROPSCOUT: a mini field robot for research on precision agriculture , 2004 .

[69]  Robin R. Murphy,et al.  Introduction to AI Robotics , 2000 .

[70]  Thomas Rath,et al.  Improving plant discrimination in image processing by use of different colour space transformations , 2002 .

[71]  Claus G. Sørensen,et al.  Organic Farming Scenarios: Operational Analysis and Costs of implementing Innovative Technologies , 2005 .

[72]  David C. Slaughter,et al.  Autonomous robotic weed control systems: A review , 2008 .

[73]  Thomas Bak,et al.  Agricultural Robotic Platform with Four Wheel Steering for Weed Detection , 2004 .

[74]  Anders Orebäck,et al.  Evaluation of Architectures for Mobile Robotics , 2003, Auton. Robots.

[75]  Jan Dimon Bendtsen,et al.  Robust Feedback Linearization-based Control Design for a Wheeled Mobile Robot , 2002 .

[76]  G. van Straten,et al.  Autonomous Navigation with a Weeding Robot , 2006 .

[77]  Thomas Bak,et al.  The Effect of Laser Treatment as a Weed Control Method , 2006 .

[78]  R. Y. van der Weide,et al.  Practical weed control in arable farming and outdoor vegetable cultivation without chemicals , 2006 .

[79]  D. C. Cloutier,et al.  The design of an autonomous weeding robot. , 2004 .

[80]  Roland Gerhards,et al.  Sensor systems for automatic weed detection. , 2001 .

[81]  J. Ascard,et al.  Influence of developmental stage and time of assessment on hot water weed control , 2002 .

[82]  T. G. Nybrant AUTOMATIC GUIDANCE OF FARM VEHICLES , 1991 .

[83]  T. Hague,et al.  A bandpass filter-based approach to crop row location and tracking , 2001 .

[84]  Vincent Leemans,et al.  Application of the hough transform for seed row localisation using machine vision , 2006 .

[85]  Philippe Martinet,et al.  Automatic Guidance of a Farm Tractor Relying on a Single CP-DGPS , 2002, Auton. Robots.

[86]  Claus G. Sørensen,et al.  Decomposition of Agricultural tasks into Robotic Behaviours , 2007 .

[87]  D. C. Slaughter,et al.  Vision Guided Precision Cultivation , 1999, Precision Agriculture.

[88]  G. van Straten,et al.  RTK-DGPS based path following with a Robotic Platform , 2007 .

[89]  G. van Straten,et al.  Path following with a robotic platform , 2007 .

[90]  John Billingsley,et al.  The successful development of a vision guidance system for agriculture , 1997 .

[91]  G. van Straten,et al.  Systematic design of an autonomous platform for robotic weeding , 2010 .

[92]  Jørgen Schou,et al.  Using laser to measure stem thickness and cut weed stems , 2002 .

[93]  M. W. Torrie,et al.  Joint Architecture for Unmanned Ground Systems (JAUGS) Applied to Autonomous Agricultural Vehicles , 2002 .

[94]  Herman Herman,et al.  A System for Semi-Autonomous Tractor Operations , 2002, Auton. Robots.

[95]  N. D. Tillett,et al.  Mechanical within-row weed control for transplanted crops using computer vision , 2008 .

[96]  Roberto Manduchi,et al.  Obstacle Detection and Terrain Classification for Autonomous Off-Road Navigation , 2005, Auton. Robots.

[97]  Ascard Comparison of flaming and infrared radiation techniques for thermal weed control , 1998 .

[98]  J. Ascard,et al.  Effects of flame weeding on weed species at different developmental stages. , 1995 .