The joy of transient chaos.

We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.

[1]  S. Newhouse,et al.  On the estimation of topological entropy , 1993 .

[2]  E. Altmann,et al.  Quantum signatures of classical multifractal measures. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  K. Lehnertz,et al.  Route to extreme events in excitable systems. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Higinio Mora-Mora,et al.  μ-MAR: Multiplane 3D Marker based Registration for depth-sensing cameras , 2015, Expert Syst. Appl..

[5]  Tamás Bódai,et al.  Probabilistic Concepts in a Changing Climate: A Snapshot Attractor Picture , 2015 .

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Zoltán Toroczkai,et al.  Spatial Models of Prebiotic Evolution: Soup Before Pizza? , 2003, Origins of life and evolution of the biosphere.

[8]  T. Tél,et al.  Topological Entropy: A Lagrangian Measure of the State of the Free Atmosphere , 2013 .

[9]  Eduardo G. Altmann,et al.  Leaking chaotic systems , 2012, 1208.0254.

[10]  Mária Ercsey-Ravasz,et al.  Robust optimization with transiently chaotic dynamical systems , 2014 .

[11]  J. Rogers Chaos , 1876 .

[12]  Grebogi,et al.  Multifractal properties of snapshot attractors of random maps. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[13]  Y. Lai,et al.  Origin of chaotic transients in excitatory pulse-coupled networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Crutchfield,et al.  Are attractors relevant to turbulence? , 1988, Physical review letters.

[15]  F. Hynne,et al.  Transient period doublings, torus oscillations, and chaos in a closed chemical system , 1994 .

[16]  J. Yorke,et al.  Fractal Basin Boundaries, Long-Lived Chaotic Transients, And Unstable-Unstable Pair Bifurcation , 1983 .

[17]  Tamás Tél,et al.  Advection in chaotically time-dependent open flows , 1998 .

[18]  Michael Ghil,et al.  Climate dynamics and fluid mechanics: Natural variability and related uncertainties , 2008, 1006.2864.

[19]  Lai-Sang Young,et al.  Dimension formula for random transformations , 1988 .

[20]  Henri Weimerskirch,et al.  Top marine predators track Lagrangian coherent structures , 2009, Proceedings of the National Academy of Sciences.

[21]  Ying-Cheng Lai,et al.  Noise-induced unstable dimension variability and transition to chaos in random dynamical systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[23]  E. Ott Chaos in Dynamical Systems: Contents , 2002 .

[24]  Tamás Tél,et al.  Chaotic systems with absorption. , 2013, Physical review letters.

[25]  Hui Cao,et al.  Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics , 2015 .

[26]  Marcel Novaes,et al.  Resonances in open quantum maps , 2012, 1211.7248.

[27]  U. Feudel,et al.  Biological activity in the wake of an island close to a coastal upwelling , 2008, 0802.3532.

[28]  G. Drótos,et al.  The decay of a normally hyperbolic invariant manifold to dust in a three degrees of freedom scattering system , 2014 .

[29]  Hu,et al.  Noise and chaos in a fractal basin boundary regime of a Josephson junction. , 1985, Physical review letters.

[30]  Zoltán Toroczkai,et al.  Optimization hardness as transient chaos in an analog approach to constraint satisfaction , 2011, ArXiv.

[31]  Anton Daitche,et al.  Memory effects in chaotic advection of inertial particles , 2014 .

[32]  D. Wisniacki,et al.  Distribution of resonances in the quantum open baker map. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  G. Haller,et al.  Lagrangian coherent structures and mixing in two-dimensional turbulence , 2000 .

[34]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[35]  Adilson E Motter,et al.  Doubly transient chaos: generic form of chaos in autonomous dissipative systems. , 2013, Physical review letters.

[36]  Escape rate: a Lagrangian measure of particle deposition from the atmosphere , 2013 .

[37]  Gilreath,et al.  Experimental Evidence for Chaotic Scattering in a Fluid Wake. , 1996, Physical review letters.

[38]  James A. Yorke,et al.  Expanding maps on sets which are almost invariant. Decay and chaos , 1979 .

[39]  Eckehard Schöll,et al.  Transient scaling and resurgence of chimera states in networks of Boolean phase oscillators. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  David A. Siegel,et al.  Filamentation and eddy-eddy interactions in marine larval accumulation and transport , 2013 .

[41]  Tél,et al.  Escape rate from strange sets as an eigenvalue. , 1987, Physical review. A, General physics.

[42]  T. Tél,et al.  Relativistic effects in the chaotic Sitnikov problem , 2011, 1103.6189.

[43]  G. Haller Lagrangian Coherent Structures , 2015 .

[44]  Matthias Wolfrum,et al.  Chimera states are chaotic transients. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Dexter Kozen,et al.  New , 2020, MFPS.

[46]  Zs. Reg'aly,et al.  TRANSIENT CHAOS AND FRACTAL STRUCTURES IN PLANETARY FEEDING ZONES , 2014, 1412.1510.

[47]  G. Froyland,et al.  How well-connected is the surface of the global ocean? , 2014, Chaos.

[48]  Holger Kantz,et al.  Repellers, semi-attractors, and long-lived chaotic transients , 1985 .

[49]  E. Zotos A Hamiltonian system of three degrees of freedom with eight channels of escape: The Great Escape , 2014, 1404.4285.

[50]  Y. Lai,et al.  Quantum chaotic scattering in graphene systems in the absence of invariant classical dynamics. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Chaotic Explosions , 2015, 1501.05443.

[52]  E. Ziemniak,et al.  Application of scattering chaos to particle transport in a hydrodynamical flow. , 1993, Chaos.

[53]  Ying-Cheng Lai,et al.  Superpersistent chaotic transients in physical space: advective dynamics of inertial particles in open chaotic flows under noise. , 2003, Physical review letters.

[54]  C. Jung,et al.  Rainbow singularities in the doubly differential cross section for scattering off a perturbed magnetic dipole , 2012 .

[55]  Y. Lai,et al.  Transient chaos in optical metamaterials. , 2011, Chaos.

[56]  G. Károlyi,et al.  Emerging fractal patterns in a real 3D cerebral aneurysm. , 2015, Journal of theoretical biology.

[57]  Asymptotic observability of low-dimensional powder chaos in a three-degrees-of-freedom scattering system. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  Celso Grebogi,et al.  Are the fractal skeletons the explanation for the narrowing of arteries due to cell trapping in a disturbed blood flow? , 2012, Comput. Biol. Medicine.

[59]  H. Aref Stirring by chaotic advection , 1984, Journal of Fluid Mechanics.

[60]  Margaret Nichols Trans , 2015, De-centering queer theory.

[61]  Y. Lai,et al.  Harnessing quantum transport by transient chaos. , 2013, Chaos.

[62]  B. Hao,et al.  Directions in chaos , 1987 .

[63]  Zoltán Toroczkai,et al.  The Chaos Within Sudoku , 2012, Scientific Reports.

[64]  S. Nonnenmacher Spectral problems in open quantum chaos , 2011, 1105.2457.

[65]  Thomas M. Antonsen,et al.  Modeling fractal entrainment sets of tracers advected by chaotic temporally irregular fluid flows using random maps , 1997 .

[66]  Tamás Bódai,et al.  Annual variability in a conceptual climate model: snapshot attractors, hysteresis in extreme events, and climate sensitivity. , 2012, Chaos.

[67]  J. Yorke,et al.  Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .

[68]  J. Vollmer Chaos, spatial extension, transport, and non-equilibrium thermodynamics , 2002 .

[69]  B. Eckhardt,et al.  Increasing lifetimes and the growing saddles of shear flow turbulence. , 2013, Physical review letters.

[70]  J. Sheinbaum,et al.  Nonlinear Processes in Geophysical Fluid Dynamics , 2003 .

[71]  K. Showalter,et al.  Transient chaos in a closed chemical system , 1991 .

[72]  E. Altmann,et al.  Stochastic perturbations in open chaotic systems: random versus noisy maps. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  J. Westerweel,et al.  Repeller or attractor? Selecting the dynamical model for the onset of turbulence in pipe flow. , 2008, Physical review letters.