Tailored finite point method for steady-state reaction-diffusion equations

Abstract. In this paper, we propose to use the tailored-finite-point method (TFPM) for a type of steady-state reaction-diffusion problems in two dimensions. Three tailored finite point schemes are constructed for the given problem. Our finite point method has been tailored to some particular properties of the problem. Therefore, our TFPM satisfies the discrete maximum principle automatically. We also study the error estimates of our TFPM. We prove that our TFPM can achieve good accuracy even when the mesh size h≫ ε. Our numerical examples show the efficiency and reliability of our method.

[1]  E. Oñate,et al.  A FINITE POINT METHOD IN COMPUTATIONAL MECHANICS. APPLICATIONS TO CONVECTIVE TRANSPORT AND FLUID FLOW , 1996 .

[2]  Ionel Michael Navon,et al.  Uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems: convection—diffusion type , 1998 .

[3]  Jens Markus Melenk,et al.  hp-Finite Element Methods for Singular Perturbations , 2002 .

[4]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[5]  Zhongyi,et al.  A TAILORED FINITE POINT METHOD FOR THE HELMHOLTZ EQUATION WITH HIGH WAVE NUMBERS IN HETEROGENEOUS MEDIUM , 2008 .

[6]  Shishkin,et al.  A Finite Difference Scheme on a Priori Adapted Meshes for a Singularly Perturbed Parabolic Convection-Diffusion Equation , 2008 .

[7]  A. Velazquez,et al.  Finite point solver for the simulation of 2-D laminar incompressible unsteady flows , 2004 .

[8]  Martin Stynes,et al.  Steady-state convection-diffusion problems , 2005, Acta Numerica.

[9]  Zhongyi Huang,et al.  Tailored Finite Point Method for a Singular Perturbation Problem with Variable Coefficients in Two Dimensions , 2009, J. Sci. Comput..

[10]  Zhongyi Huang,et al.  Tailored finite point method for the interface problem , 2009, Networks Heterog. Media.

[11]  R. B. Kellogg,et al.  Differentiability properties of solutions of the equation -ε 2 δ u + ru = f ( x,y ) in a square , 1990 .

[12]  Iliya A. Brayanov,et al.  Uniformly Convergent High-Order Schemes for a 2D Elliptic Reaction-Diffusion Problem with Anisotropic Coefficients , 2002, Numerical Methods and Application.

[13]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[14]  Gui-Rong Liu,et al.  A novel finite point method for flow simulation , 2002 .

[15]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[16]  Endre Süli,et al.  Analysis of a cell-vertex finite volume method for convection-diffusion problems , 1997, Math. Comput..

[17]  Chen,et al.  Uniform Convergence Analysis for Singularly Perturbed Elliptic Problems with Parabolic Layers , 2008 .

[18]  Pieter Wesseling Uniform convergence of discretization error for a singular perturbation problem , 1996 .

[19]  R. Bruce Kellogg,et al.  A priori estimates and analysis of a numerical method for a turning point problem , 1984 .

[20]  Martin Stynes,et al.  A singularly perturbed convection–diffusion problem in a half-plane , 2006 .

[21]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[22]  István Berkes,et al.  On the convergence of ∑_{}(_{}) , 2009 .

[23]  Zhongyi Huang,et al.  A Tailored Finite Point Method for a Singular Perturbation Problem on an Unbounded Domain , 2008, J. Sci. Comput..

[24]  A. Il'in Differencing scheme for a differential equation with a small parameter affecting the highest derivative , 1969 .

[25]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[26]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .