A crack-tracking technique for localized damage in quasi-brittle materials

This work presents a procedure to simulate the growth and propagation of localized tensile cracks on quasi-brittle materials. The so-called smeared damage approach, which consists in standard finite elements and local nonlinear constitutive laws, is recovered and improved in order to represent crack localization and avoid spurious mesh-bias dependence in the discrete problem. This is achieved by means of the implementation of a local crack-tracking algorithm which can reproduce individual (discrete) cracks and ensure objectivity of the finite element problem solution. The performance of the localized damage model is stressed by means of the analyses of structural case-studies. Compared to the Smeared Crack Approach in its original form, the presented procedure shows clearly a better capacity to predict realistic collapse mechanisms. The proposed tracking technique is relatively inexpensive.

[1]  Alfredo Edmundo Huespe,et al.  Continuum approach to material failure in strong discontinuity settings , 2004 .

[2]  T. Belytschko,et al.  Vector level sets for description of propagating cracks in finite elements , 2003 .

[3]  Stefano Mariani,et al.  An extended FE strategy for transition from continuum damage to mode I cohesive crack propagation , 2007 .

[4]  Gerhard A. Holzapfel,et al.  3D Crack propagation in unreinforced concrete. A two-step algorithm for tracking 3D crack paths , 2006 .

[5]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[6]  G. Ventura,et al.  A regularized XFEM model for the transition from continuous to discontinuous displacements , 2008 .

[7]  Jaime Planas,et al.  Mixed Mode Fracture of Concrete under Proportional and Nonproportional Loading , 1998 .

[8]  Günter Hofstetter,et al.  Numerical prediction of crack propagation and crack widths in concrete structures , 2009 .

[9]  Miguel Cervera,et al.  Smeared crack approach: back to the original track , 2006 .

[10]  J. C. Simo,et al.  An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids , 1993 .

[11]  M. Cervera,et al.  A smeared‐embedded mesh‐corrected damage model for tensile cracking , 2008 .

[12]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[13]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[14]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[15]  E. T. S. Enginyers de Camins,et al.  Strong discontinuities and continuum plasticity models : the strong discontinuity approach , 1999 .

[16]  G. Hofstetter,et al.  An embedded strong discontinuity model for cracking of plain concrete , 2006 .

[17]  J. Oliver,et al.  On strategies for tracking strong discontinuities in computational failure mechanics , 2002 .

[18]  J. Oliver A consistent characteristic length for smeared cracking models , 1989 .

[19]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—I. Formulation , 1989 .

[20]  Jörn Mosler,et al.  Embedded crack vs. smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias , 2004 .

[21]  M. Cervera An orthotropic mesh corrected crack model , 2008 .

[22]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[23]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[24]  Elena Benvenuti,et al.  A regularized XFEM framework for embedded cohesive interfaces , 2008 .

[25]  L. Pelà Continuum damage model for nonlinear analysis of masonry structures , 2009 .

[26]  A. Huespe,et al.  A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM , 2006 .

[27]  J. Rots Computational modeling of concrete fracture , 1988 .

[28]  R. de Borst,et al.  Computational modelling of concrete fracture , 2012 .

[29]  Jean-Louis Chaboche,et al.  ASPECT PHENOMENOLOGIQUE DE LA RUPTURE PAR ENDOMMAGEMENT , 1978 .

[30]  Y. R. Rashid,et al.  Ultimate strength analysis of prestressed concrete pressure vessels , 1968 .

[31]  Paul Steinmann,et al.  Modeling three‐dimensional crack propagation—A comparison of crack path tracking strategies , 2008 .

[32]  G. Meschke,et al.  Energy-based modeling of cohesive and cohesionless cracks via X-FEM , 2007 .

[33]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[34]  A. Huespe,et al.  Continuum approach to the numerical simulation of material failure in concrete , 2004 .

[35]  Miguel Cervera,et al.  Nonlinear analysis of reinforced concrete plate and shell structures using 20-noded isoparametric brick elements , 1987 .

[36]  Miguel Cervera,et al.  Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique , 2006 .

[37]  J. Oliyer Continuum modelling of strong discontinuities in solid mechanics using damage models , 1995 .

[38]  Rui Faria,et al.  Seismic evaluation of concrete dams via continuum damage models , 1995 .