Exponential synchronization of switched genetic oscillators with time-varying delays

[1]  Jinde Cao,et al.  Synchronization of coupled neural networks with random coupling strengths and mixed probabilistic time‐varying delays , 2013 .

[2]  Jian-An Fang,et al.  Exponential stability of switched genetic regulatory networks with both stable and unstable subsystems , 2013, J. Frankl. Inst..

[3]  Liang Chen,et al.  Synchronization of Markovian jump genetic oscillators with nonidentical feedback delay , 2013, Neurocomputing.

[4]  Zidong Wang,et al.  Synchronization of Coupled Neutral-Type Neural Networks With Jumping-Mode-Dependent Discrete and Unbounded Distributed Delays , 2013, IEEE Transactions on Cybernetics.

[5]  Bor-Sen Chen,et al.  Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing , 2012, BMC Systems Biology.

[6]  R. Rakkiyappan,et al.  Robust μ-stability analysis of Markovian switching uncertain stochastic genetic regulatory networks with unbounded time-varying delays , 2012 .

[7]  Xiufen Zou,et al.  Synchronization ability of coupled cell-cycle oscillators in changing environments , 2012, BMC Systems Biology.

[8]  Zidong Wang,et al.  Sampled-Data Synchronization Control of Dynamical Networks With Stochastic Sampling , 2012, IEEE Transactions on Automatic Control.

[9]  Jinde Cao,et al.  Stability analysis for switched genetic regulatory networks: An average dwell time approach , 2011, Journal of the Franklin Institute.

[10]  James Lam,et al.  Synchronization in networks of genetic oscillators with delayed coupling , 2011 .

[11]  J. Ferrell,et al.  Modeling the Cell Cycle: Why Do Certain Circuits Oscillate? , 2011, Cell.

[12]  Zidong Wang,et al.  Synchronization of stochastic genetic oscillator networks with time delays and Markovian jumping parameters , 2010, Neurocomputing.

[13]  James Lam,et al.  Weighted H∞ Filtering of Switched Systems with Time-Varying Delay: Average Dwell Time Approach , 2009, Circuits Syst. Signal Process..

[14]  Zidong Wang,et al.  State estimation for Markov-type genetic regulatory networks with delays and uncertain mode transition rates , 2009 .

[15]  Jinde Cao,et al.  Global synchronization of delay-coupled genetic oscillators , 2009, Neurocomputing.

[16]  Yonghui Sun,et al.  Stochastic stability of Markovian switching genetic regulatory networks , 2009 .

[17]  P. Shi,et al.  Exponential H∞ filtering for switched linear systems with interval time‐varying delay , 2009 .

[18]  Wei Wu,et al.  Global $\mu$ -Synchronization of Linearly Coupled Unbounded Time-Varying Delayed Neural Networks With Unbounded Delayed Coupling , 2008, IEEE Transactions on Neural Networks.

[19]  Jinde Cao,et al.  Robust stability of genetic regulatory networks with distributed delay , 2008, Cognitive Neurodynamics.

[20]  G. Feng,et al.  Robust H infinity synchronization of chaotic Lur'e systems. , 2008, Chaos.

[21]  Fuwen Yang,et al.  Stochastic Dynamic Modeling of Short Gene Expression Time-Series Data , 2008, IEEE Transactions on NanoBioscience.

[22]  Claudine Chaouiya,et al.  Petri net modelling of biological networks , 2007, Briefings Bioinform..

[23]  M. A. Henson,et al.  A molecular model for intercellular synchronization in the mammalian circadian clock. , 2007, Biophysical journal.

[24]  C. Tomlin,et al.  Biology by numbers: mathematical modelling in developmental biology , 2007, Nature Reviews Genetics.

[25]  Kazuyuki Aihara,et al.  Stochastic synchronization of genetic oscillator networks , 2007, BMC Systems Biology.

[26]  K. Aihara,et al.  Synchronization of coupled nonidentical genetic oscillators , 2006, Physical biology.

[27]  A. Edwards,et al.  Sync-how order emerges from chaos in the universe, nature, and daily life , 2005 .

[28]  R. Lima,et al.  Dynamical complexity of discrete-time regulatory networks , 2005, math/0509141.

[29]  Luonan Chen,et al.  Synchronizing Genetic Oscillators by Signaling Molecules , 2005, Journal of biological rhythms.

[30]  R. Coutinho,et al.  Discrete time piecewise affine models of genetic regulatory networks , 2005, Journal of mathematical biology.

[31]  M. Elowitz,et al.  Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Steven H. Strogatz,et al.  Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life , 2004 .

[33]  S. Yamaguchi,et al.  Synchronization of Cellular Clocks in the Suprachiasmatic Nucleus , 2003, Science.

[34]  Vladimir L. Kharitonov,et al.  Stability of Time-Delay Systems , 2003, Control Engineering.

[35]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[36]  Jamal Daafouz,et al.  Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach , 2002, IEEE Trans. Autom. Control..

[37]  D. A. Baxter,et al.  Mathematical Modeling of Gene Networks , 2000, Neuron.

[38]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[39]  Gary D. Stormo,et al.  Modeling Regulatory Networks with Weight Matrices , 1998, Pacific Symposium on Biocomputing.

[40]  S. Dover Biology by numbers , 1983, Nature.

[41]  Li Yu,et al.  Passivity analysis for discrete-time switched neural networks with various activation functions and mixed time delays , 2011, Nonlinear Dynamics.

[42]  Xuyang Lou,et al.  Exponential stability of genetic regulatory networks with random delays , 2010, Neurocomputing.

[43]  Jinde Cao,et al.  Asymptotic and robust stability of genetic regulatory networks with time-varying delays , 2008, Neurocomputing.

[44]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[45]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.