Bayesian methods for change‐point detection in long‐range dependent processes

Abstract. We describe a Bayesian method for detecting structural changes in a long‐range dependent process. In particular, we focus on changes in the long‐range dependence parameter, d, and changes in the process level, μ. Markov chain Monte Carlo (MCMC) methods are used to estimate the posterior probability and size of a change at time t, along with other model parameters. A time‐dependent Kalman filter approach is used to evaluate the likelihood of the fractionally integrated ARMA model characterizing the long‐range dependence. The method allows for multiple change points and can be extended to the long‐memory stochastic volatility case. We apply the method to three examples, to investigate a change in persistence of the yearly Nile River minima, to investigate structural changes in the series of durations between intraday trades of IBM stock on the New York Stock Exchange, and to detect structural breaks in daily stock returns for the Coca Cola Company during the 1990s.

[1]  H. H. Prince Omar Toussoun,et al.  Memoire sur l'Histoire du Nil , 1926 .

[2]  J. Balek,et al.  Hydrology and Water Resources in Tropical Africa , 1977 .

[3]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[4]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[5]  J. Hosking Modeling persistence in hydrological time series using fractional differencing , 1984 .

[6]  G. C. Tiao,et al.  Random Level-Shift Time Series Models, ARIMA Approximations, and Level-Shift Detection , 1990 .

[7]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[8]  Adrian E. Raftery,et al.  [Practical Markov Chain Monte Carlo]: Comment: One Long Run with Diagnostics: Implementation Strategies for Markov Chain Monte Carlo , 1992 .

[9]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[10]  R. McCulloch,et al.  Bayesian Inference and Prediction for Mean and Variance Shifts in Autoregressive Time Series , 1993 .

[11]  S. Chib,et al.  Bayes inference in regression models with ARMA (p, q) errors , 1994 .

[12]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[13]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[14]  N. Shephard,et al.  The simulation smoother for time series models , 1995 .

[15]  N. Ravishanker,et al.  Bayesian Analysis of ARMA Processes: Complete Sampling Based Inference Under Full Likelihoods , 1996 .

[16]  Javier Hidalgo,et al.  Testing for structural change in a long-memory environment☆ , 1996 .

[17]  Jan Beran,et al.  Testing for a change of the long-memory parameter , 1996 .

[18]  Richard T. Baillie,et al.  Long memory processes and fractional integration in econometrics , 1996 .

[19]  Ignacio N. Lobato,et al.  Real and Spurious Long-Memory Properties of Stock-Market Data , 1996 .

[20]  Robert Kohn,et al.  ROBUST BAYESIAN ESTIMATION OF AUTOREGRESSIVE‐‐MOVING‐AVERAGE MODELS , 1997 .

[21]  J. Cavanaugh,et al.  Self-Similarity Index Estimation via Waveletsfor Locally Self-Similar ProcessesYazhen , 1997 .

[22]  Chung-Ming Kuan,et al.  Change‐Point Estimation of Fractionally Integrated Processes , 1998 .

[23]  Jonathan H. Wright Testing for a Structural Break at Unknown Date with Long‐memory Disturbances , 1998 .

[24]  S. Chib Estimation and comparison of multiple change-point models , 1998 .

[25]  Nalini Ravishanker,et al.  Bayesian analysis of autoregressive fractionally integrated moving‐average processes , 1998 .

[26]  F. Breidt,et al.  The detection and estimation of long memory in stochastic volatility , 1998 .

[27]  Wilfredo Palma,et al.  State space modeling of long-memory processes , 1998 .

[28]  Real and Spurious Long-Memory Properties of Stock-Market Data: Comment , 1998 .

[29]  Clive W. J. Granger,et al.  Occasional Structural Breaks and Long Memory , 1999 .

[30]  Francis X. Diebold,et al.  Long Memory and Structural Change , 1999 .

[31]  F. Diebold,et al.  Long Memory and Regime Switching , 2000 .

[32]  B. Ray,et al.  Long-range Dependence in Daily Stock Volatilities , 2000 .

[33]  Clive W. J. Granger,et al.  An introduction to long-memory time series models and fractional differencing , 2001 .

[34]  Joseph E. Cavanaugh,et al.  Self-similarity index estimation via wavelets for locally self-similar processes , 2001 .

[35]  P. Guttorp,et al.  Testing for homogeneity of variance in time series: Long memory, wavelets, and the Nile River , 2002 .

[36]  Nan-Jung Hsu,et al.  Bayesian analysis of fractionally integrated ARMA with additive noise , 2003 .