A joint decomposition method for global optimization of multiscenario nonconvex mixed-integer nonlinear programs

This paper proposes a joint decomposition method that combines Lagrangian decomposition and generalized Benders decomposition, to efficiently solve multiscenario nonconvex mixed-integer nonlinear programming (MINLP) problems to global optimality, without the need for explicit branch and bound search. In this approach, we view the variables coupling the scenario dependent variables and those causing nonconvexity as complicating variables. We systematically solve the Lagrangian decomposition subproblems and the generalized Benders decomposition subproblems in a unified framework. The method requires the solution of a difficult relaxed master problem, but the problem is only solved when necessary. Enhancements to the method are made to reduce the number of the relaxed master problems to be solved and ease the solution of each relaxed master problem. We consider two scenario-based, two-stage stochastic nonconvex MINLP problems that arise from integrated design and operation of process networks in the case study, and we show that the proposed method can solve the two problems significantly faster than state-of-the-art global optimization solvers.

[1]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[2]  R. Soland An Algorithm for Separable Nonconvex Programming Problems II: Nonconvex Constraints , 1971 .

[3]  Philip Wolfe,et al.  Validation of subgradient optimization , 1974, Math. Program..

[4]  P. I. Barton,et al.  Construction of Convex Relaxations Using Automated Code Generation Techniques , 2002 .

[5]  K. Holmberg Mean value cross decomposition applied to integer programming problems , 1997 .

[6]  J. E. Falk,et al.  An Algorithm for Separable Nonconvex Programming Problems , 1969 .

[7]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[8]  Tony J. Van Roy,et al.  A Cross Decomposition Algorithm for Capacitated Facility Location , 1986, Oper. Res..

[9]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[10]  Informationstechnik Berlin,et al.  Dual Decomposition in Stochastic Integer Programming , 1996 .

[11]  Emmanuel Ogbe,et al.  Multicolumn-multicut cross decomposition for stochastic mixed-integer linear programming , 2015 .

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Christodoulos A. Floudas,et al.  A Framework for Globally Optimizing Mixed-Integer Signomial Programs , 2013, Journal of Optimization Theory and Applications.

[14]  Costas D. Maranas,et al.  Global Optimization in Generalized Geometric Programming , 1997, Encyclopedia of Optimization.

[15]  Ignacio E. Grossmann,et al.  A cross-decomposition scheme with integrated primal–dual multi-cuts for two-stage stochastic programming investment planning problems , 2016, Math. Program..

[16]  Arne Stolbjerg Drud,et al.  CONOPT - A Large-Scale GRG Code , 1994, INFORMS J. Comput..

[17]  Frank Pettersson,et al.  Optimization of pump configurations as a MINLP problem , 1994 .

[18]  Ignacio E. Grossmann,et al.  A Lagrangean based branch-and-cut algorithm for global optimization of nonconvex mixed-integer nonlinear programs with decomposable structures , 2008, J. Glob. Optim..

[19]  Martin W. P. Savelsbergh,et al.  Branch-and-Price: Column Generation for Solving Huge Integer Programs , 1998, Oper. Res..

[20]  Tobias Achterberg,et al.  SCIP: solving constraint integer programs , 2009, Math. Program. Comput..

[21]  Xiang Li,et al.  Nonconvex Generalized Benders Decomposition for Stochastic Separable Mixed-Integer Nonlinear Programs , 2011, J. Optim. Theory Appl..

[22]  Kaj Holmberg,et al.  On the convergence of cross decomposition , 1990, Math. Program..

[23]  I. Grossmann,et al.  A mixed-integer nonlinear programming algorithm for process systems synthesis , 1986 .

[24]  C. Floudas Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications , 1995 .

[25]  Jeremy A. Bloom,et al.  Solving an Electricity Generating Capacity Expansion Planning Problem by Generalized Benders' Decomposition , 1983, Oper. Res..

[26]  J. Birge,et al.  A multicut algorithm for two-stage stochastic linear programs , 1988 .

[27]  S. M. Shahidehpour,et al.  Cross decomposition for multi-area optimal reactive power planning , 1993 .

[28]  C. A. Haverly Behavior of recursion model - more studies , 1979, SMAP.

[29]  Nikolaos V. Sahinidis,et al.  Optimization under uncertainty: state-of-the-art and opportunities , 2004, Comput. Chem. Eng..

[30]  Monique Guignard-Spielberg,et al.  Lagrangean decomposition: A model yielding stronger lagrangean bounds , 1987, Math. Program..

[31]  I. Grossmann,et al.  Convergence properties of generalized benders decomposition , 1991 .

[32]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[33]  Nikolaos V. Sahinidis,et al.  A branch-and-reduce approach to global optimization , 1996, J. Glob. Optim..

[34]  Oded Berman,et al.  Optimization Models for Reliability of Modular Software Systems , 1993, IEEE Trans. Software Eng..

[35]  Asgeir Tomasgard,et al.  A branch-and-bound method for discretely-constrained mathematical programs with equilibrium constraints , 2013, Ann. Oper. Res..

[36]  Ignacio E. Grossmann,et al.  A Branch and Contract Algorithm for Problems with Concave Univariate, Bilinear and Linear Fractional Terms , 1999, J. Glob. Optim..

[37]  Steffen Rebennack,et al.  Optimal design of mixed AC-DC distribution systems for commercial buildings: A Nonconvex Generalized Benders Decomposition approach , 2015, Eur. J. Oper. Res..

[38]  Jacques F. Benders,et al.  Partitioning procedures for solving mixed-variables programming problems , 2005, Comput. Manag. Sci..

[39]  Mark Robinson,et al.  A short-term operational planning model for natural gas production systems† , 2008 .

[40]  C. A. Haverly Studies of the behavior of recursion for the pooling problem , 1978, SMAP.

[41]  Leon S. Lasdon,et al.  Optimization Theory of Large Systems , 1970 .

[42]  Thomas A. Adams,et al.  Optimal Design and Operation of Static Energy Polygeneration Systems , 2011 .

[43]  C. Floudas,et al.  Global Optimization in Generalized Geometric Programming , 1997, Encyclopedia of Optimization.

[44]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[45]  Rohit Kannan,et al.  Algorithms, analysis and software for the global optimization of two-stage stochastic programs , 2018 .

[46]  Krzysztof C. Kiwiel A Proximal-Projection Bundle Method for Lagrangian Relaxation, Including Semidefinite Programming , 2006, SIAM J. Optim..

[47]  Tony J. Van Roy,et al.  Cross decomposition for mixed integer programming , 1983, Math. Program..

[48]  A. M. Geoffrion Generalized Benders decomposition , 1972 .

[49]  C. Adjiman,et al.  Global optimization of mixed‐integer nonlinear problems , 2000 .

[50]  Xiang Li,et al.  A new cross decomposition method for stochastic mixed-integer linear programming , 2017, Eur. J. Oper. Res..

[51]  Christodoulos A. Floudas,et al.  ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.

[52]  P. I. Barton,et al.  Stochastic pooling problem for natural gas production network design and operation under uncertainty , 2011 .