Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry.

[1]  Richard Martel,et al.  Photooxidation and quantum confinement effects in exfoliated black phosphorus. , 2015, Nature materials.

[2]  M. Fuhrer,et al.  Creating a Stable Oxide at the Surface of Black Phosphorus. , 2015, ACS applied materials & interfaces.

[3]  Changfeng Chen,et al.  Phosphorene: Fabrication, Properties, and Applications. , 2015, The journal of physical chemistry letters.

[4]  F. Xia,et al.  The renaissance of black phosphorus , 2015, Proceedings of the National Academy of Sciences.

[5]  Du Xiang,et al.  Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus , 2015, Nature Communications.

[6]  Takeshi Fujita,et al.  Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. , 2015, Nature chemistry.

[7]  L. Lauhon,et al.  Effective passivation of exfoliated black phosphorus transistors against ambient degradation. , 2014, Nano letters.

[8]  Hao Jiang,et al.  Black phosphorus radio-frequency transistors. , 2014, Nano letters.

[9]  M. Demarteau,et al.  Tunable transport gap in phosphorene. , 2014, Nano letters.

[10]  Phaedon Avouris,et al.  Origin of photoresponse in black phosphorus phototransistors , 2014, 1407.7286.

[11]  Guangyuan Zheng,et al.  Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. , 2014, Nano letters.

[12]  Zongfu Yu,et al.  Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. , 2014, ACS nano.

[13]  R. Soklaski,et al.  Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus , 2014 .

[14]  T. Frauenheim,et al.  Phosphorene as a Superior Gas Sensor: Selective Adsorption and Distinct I-V Response. , 2014, The journal of physical chemistry letters.

[15]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[16]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[17]  Rostislav A. Doganov,et al.  Electric field effect in ultrathin black phosphorus , 2014, 1402.5718.

[18]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics , 2014, Nature Communications.

[19]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[20]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[21]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[22]  G. Schatz,et al.  Metal oxide nanoparticle growth on graphene via chemical activation with atomic oxygen. , 2013, Journal of the American Chemical Society.

[23]  YuHuang Wang,et al.  Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. , 2013, Nature chemistry.

[24]  Mark C Hersam,et al.  Atomic covalent functionalization of graphene. , 2013, Accounts of chemical research.

[25]  Michael S Strano,et al.  Covalent electron transfer chemistry of graphene with diazonium salts. , 2013, Accounts of chemical research.

[26]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[27]  Jing Kong,et al.  Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. , 2012, Nature chemistry.

[28]  C. Papp,et al.  Covalent bulk functionalization of graphene. , 2011, Nature chemistry.

[29]  G. Eda,et al.  Graphene oxide as a chemically tunable platform for optical applications. , 2010, Nature chemistry.

[30]  C. N. Lau,et al.  Spectroscopy of covalently functionalized graphene. , 2010, Nano letters.

[31]  C. Coletti,et al.  Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping , 2010 .

[32]  D. A. Corley,et al.  Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. , 2010, ACS nano.

[33]  W. Stark,et al.  Selective chemical modification of graphene surfaces: distinction between single- and bilayer graphene. , 2010, Small.

[34]  R. Ruoff,et al.  The chemistry of graphene oxide. , 2010, Chemical Society reviews.

[35]  E. Bekyarova,et al.  Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. , 2009, Journal of the American Chemical Society.

[36]  Phaedon Avouris,et al.  Chemical doping and electron-hole conduction asymmetry in graphene devices. , 2008, Nano letters.

[37]  M. Hersam,et al.  Structural characterization of 4-bromostyrene self-assembled monolayers on si(111). , 2007, Langmuir : the ACS journal of surfaces and colloids.

[38]  R. Smalley,et al.  Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. , 2001, Journal of the American Chemical Society.

[39]  M. McDermott,et al.  Nucleation and Growth of Functionalized Aryl Films on Graphite Electrodes , 1999 .

[40]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[41]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[42]  J. Pinson,et al.  Covalent Modification of Carbon Surfaces by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts , 1997 .

[43]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[44]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[45]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[46]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[47]  Jean-Michel Savéant,et al.  Covalent Modification of Carbon Surfaces by Grafting of Functionalized Aryl Radicals Produced from Electrochemical Reduction of Diazonium Salts , 1992 .

[48]  Corwin Hansch,et al.  A survey of Hammett substituent constants and resonance and field parameters , 1991 .

[49]  Allan,et al.  Solution of Schrödinger's equation for large systems. , 1989, Physical review. B, Condensed matter.

[50]  A. Morita,et al.  Semiconducting black phosphorus , 1986 .

[51]  S. Sugai,et al.  Raman and infrared reflection spectroscopy in black phosphorus , 1985 .

[52]  H. Goldwhite Introduction to phosphorus chemistry , 1981 .

[53]  R. G. Albridge,et al.  Photoelectron spectroscopy of coordination compounds. Triphenylphosphine and its complexes , 1970 .

[54]  W. L. Jolly,et al.  Phosphorus 2p electron binding energies. Correlation with extended Hueckel charges , 1970 .

[55]  F. Gadallah,et al.  Substituent effects in the polarography of aromatic diazonium salts , 1969 .