Applications To Human Brain Functional Networks

[1]  Frank Harary,et al.  Graph Theory , 2016 .

[2]  Paul J. Laurienti,et al.  A New Measure of Centrality for Brain Networks , 2010, PloS one.

[3]  C. Stam,et al.  Scale‐free dynamics of global functional connectivity in the human brain , 2004, Human brain mapping.

[4]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[5]  K. Kaski,et al.  Intensity and coherence of motifs in weighted complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Alexei Vazquez,et al.  Clustering coefficient without degree correlations biases , 2004 .

[7]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[8]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[9]  Reka Albert,et al.  Mean-field theory for scale-free random networks , 1999 .

[10]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[11]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[12]  Paul J. Laurienti,et al.  Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data , 2010, NeuroImage.

[13]  Arnab Chatterjee,et al.  Small-world properties of the Indian railway network. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  N. Biggs,et al.  Graph Theory 1736-1936 , 1976 .

[15]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[16]  P. Thiran,et al.  Mapping Human Whole-Brain Structural Networks with Diffusion MRI , 2007, PloS one.

[17]  Dost Öngür,et al.  Anticorrelations in resting state networks without global signal regression , 2012, NeuroImage.

[18]  Fan Chung Graham,et al.  A random graph model for massive graphs , 2000, STOC '00.

[19]  John M Beggs,et al.  The criticality hypothesis: how local cortical networks might optimize information processing , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[22]  Alessandro Vespignani,et al.  Large-scale topological and dynamical properties of the Internet. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  B. Biswal,et al.  Functional connectivity of default mode network components: Correlation, anticorrelation, and causality , 2009, Human brain mapping.

[24]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[25]  S. Redner How popular is your paper? An empirical study of the citation distribution , 1998, cond-mat/9804163.

[26]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[27]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[28]  Andrew V. Goldberg,et al.  Shortest paths algorithms: Theory and experimental evaluation , 1994, SODA '94.

[29]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Karl J. Friston,et al.  Dynamic causal modeling , 2010, Scholarpedia.

[31]  Linyuan Lu,et al.  Random evolution in massive graphs , 2001 .

[32]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[33]  R. Albert Scale-free networks in cell biology , 2005, Journal of Cell Science.

[34]  M. Fox,et al.  The global signal and observed anticorrelated resting state brain networks. , 2009, Journal of neurophysiology.

[35]  R. Pastor-Satorras,et al.  Structure of cycles and local ordering in complex networks , 2004 .

[36]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  O Sporns,et al.  Predicting human resting-state functional connectivity from structural connectivity , 2009, Proceedings of the National Academy of Sciences.

[38]  C. Leung,et al.  Weighted assortative and disassortative networks model , 2006, physics/0607134.

[39]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[40]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[41]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[42]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[43]  Dante R. Chialvo Critical brain networks , 2004 .

[44]  Per Ottar Seglen,et al.  The skewness of science , 1992 .

[45]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[46]  Christophe Claramunt,et al.  Topological Analysis of Urban Street Networks , 2004 .

[47]  Walter Willinger,et al.  The origin of power laws in Internet topologies revisited , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[48]  Seunghwan Kim,et al.  Self-organized criticality and scale-free properties in emergent functional neural networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  M. Newman,et al.  Hierarchical structure and the prediction of missing links in networks , 2008, Nature.

[50]  Mark E. J. Newman,et al.  Ego-centered networks and the ripple effect , 2001, Soc. Networks.

[51]  D J PRICE,et al.  NETWORKS OF SCIENTIFIC PAPERS. , 1965, Science.

[52]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[53]  A. Barabasi,et al.  Scale-free characteristics of random networks: the topology of the world-wide web , 2000 .

[54]  Biyu J. He,et al.  The Temporal Structures and Functional Significance of Scale-free Brain Activity , 2010, Neuron.

[55]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[56]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[57]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[58]  S. Strogatz Exploring complex networks , 2001, Nature.

[59]  C. Bédard,et al.  Does the 1/f frequency scaling of brain signals reflect self-organized critical states? , 2006, Physical review letters.

[60]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Chuanxing Li,et al.  The Dichotomy in Degree Correlation of Biological Networks , 2011, PloS one.

[62]  Q. Vuong Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses , 1989 .

[63]  B. Bollobás The evolution of random graphs , 1984 .

[64]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Edward T. Bullmore,et al.  Efficiency and Cost of Economical Brain Functional Networks , 2007, PLoS Comput. Biol..

[66]  A. Fronczak,et al.  Higher order clustering coefficients in Barabási–Albert networks , 2002, cond-mat/0212237.

[67]  R Pastor-Satorras,et al.  Dynamical and correlation properties of the internet. , 2001, Physical review letters.

[68]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[69]  K. Gurney,et al.  Network ‘Small-World-Ness’: A Quantitative Method for Determining Canonical Network Equivalence , 2008, PloS one.

[70]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[71]  L. Amaral,et al.  The web of human sexual contacts , 2001, Nature.

[72]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[73]  M. Handcock,et al.  An assessment of preferential attachment as a mechanism for human sexual network formation , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.