Programmable complementary resistive switching behaviours of a plasma-oxidised titanium oxide nanolayer.

Through the one-step plasma oxidation of TiN thin films at room temperature (a simple semiconductor technology compatible method), a partly oxidised structure of titanium oxynitride (TiN(x)O(y)) with a TiO(2-x) nanolayer on top has been prepared for non-volatile resistive switching memory devices. The fabricated Pt/TiO(2-x)/TiN(x)O(y)/TiN memory devices demonstrate complementary resistive switching behaviours within an operation voltage of 1 V. The complementary resistive switching behaviours can be explained by redistribution of the oxygen vacancies between the Pt/TiO(2-x) top interface and the TiO(2-x)/TiN(x)O(y) bottom interface in the TiO(2-x) nanolayer. A model concerning the resistive switching mechanism as well as a recover program of a failed device is also proposed. Our work provides a possible cost-efficient solution to suppress the sneak-path problem in nanoscale crossbar memory arrays.

[1]  J. Yang,et al.  Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.

[2]  Kiyoyuki Terakura,et al.  First-principles study of the rectifying properties of Pt / TiO 2 interface , 2009 .

[3]  J. Yang,et al.  Switching dynamics in titanium dioxide memristive devices , 2009 .

[4]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[5]  Yuchao Yang,et al.  Complementary resistive switching in tantalum oxide-based resistive memory devices , 2012, 1204.3515.

[6]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[7]  H. Hwang,et al.  Excellent Selector Characteristics of Nanoscale $ \hbox{VO}_{2}$ for High-Density Bipolar ReRAM Applications , 2011, IEEE Electron Device Letters.

[8]  Yuchao Yang,et al.  Nonvolatile resistive switching in single crystalline ZnO nanowires. , 2011, Nanoscale.

[9]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[10]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[11]  M. Sung,et al.  Roles of interfacial TiOxN1−x layer and TiN electrode on bipolar resistive switching in TiN/TiO2/TiN frameworks , 2010 .

[12]  Jen‐Sue Chen,et al.  Schottky barrier mediated single-polarity resistive switching in Pt layer-included TiO(x) memory device. , 2011, ACS applied materials & interfaces.

[13]  W. Lu,et al.  High-density Crossbar Arrays Based on a Si Memristive System , 2008 .

[14]  G. Margaritondo,et al.  Electronic-Structure of Anatase Tio2 Oxide , 1994 .

[15]  Fei Zeng,et al.  Resistive Switching and Magnetic Modulation in Cobalt‐Doped ZnO , 2012, Advanced materials.

[16]  Byung Joon Choi,et al.  A detailed understanding of the electronic bipolar resistance switching behavior in Pt/TiO2/Pt structure , 2011, Nanotechnology.

[17]  Tuo-Hung Hou,et al.  Bipolar Nonlinear $\hbox{Ni/TiO}_{2}\hbox{/}\hbox{Ni}$ Selector for 1S1R Crossbar Array Applications , 2011, IEEE Electron Device Letters.

[18]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[19]  J. Sullivan,et al.  Surface characterisation of plasma-nitrided titanium: an XPS study , 1995 .

[20]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[21]  J. Pierson,et al.  Influence of substrate temperature on titanium oxynitride thin films prepared by reactive sputtering , 2004 .

[22]  K. S. Robinson,et al.  X‐Ray photoelectron spectroscopic studies of the surface of sputter ion plated films , 1984 .

[23]  R. Rosezin,et al.  High density 3D memory architecture based on the resistive switching effect , 2009 .

[24]  A. Wee,et al.  Symmetrical negative differential resistance behavior of a resistive switching device. , 2012, ACS nano.

[25]  Kurz,et al.  Formation of Ordered Nanoscale Semiconductor Dots by Ion Sputtering. , 1999, Science.

[26]  C. Yoshida,et al.  High speed resistive switching in Pt∕TiO2∕TiN film for nonvolatile memory application , 2007 .

[27]  W. Lu,et al.  CMOS compatible nanoscale nonvolatile resistance switching memory. , 2008, Nano letters.

[28]  Cheol Seong Hwang,et al.  A Pt/TiO2/Ti Schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays , 2010, Nanotechnology.

[29]  R. Waser,et al.  Mechanism for bipolar switching in a Pt / TiO 2 / Pt resistive switching cell , 2009 .

[30]  F. Zeng,et al.  Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. , 2009, Nano letters.

[31]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[32]  Jea-Gun Park,et al.  Oxygen Ion Drift‐Induced Complementary Resistive Switching in Homo TiOx/TiOy/TiOx and Hetero TiOx/TiON/TiOx Triple Multilayer Frameworks , 2012 .

[33]  Sung-Yool Choi,et al.  Interface‐Engineered Amorphous TiO2‐Based Resistive Memory Devices , 2010 .

[34]  Yang-Kyu Choi,et al.  Resistive switching of aluminum oxide for flexible memory , 2008 .

[35]  S. H. Jeon,et al.  A Low‐Temperature‐Grown Oxide Diode as a New Switch Element for High‐Density, Nonvolatile Memories , 2007 .

[36]  Young-soo Park,et al.  Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory , 2007 .

[37]  Rainer Waser,et al.  Complementary resistive switches for passive nanocrossbar memories. , 2010, Nature materials.

[38]  Production of ordered silicon nanocrystals by low-energy ion sputtering , 2001, cond-mat/0106542.