Study on inertial capture of particles by a droplet in a wide Reynolds number range

[1]  I. Langmuir,et al.  mathematical investigation of water droplet trajectories , 1946 .

[2]  W H WALTON,et al.  The suppression of airborne dust by water spray. , 1960, International journal of air pollution.

[3]  B. J. Mason,et al.  The capture of airborne particles by water drops and simulated snow crystals , 1966 .

[4]  Experimental and Numerical Collision Efficiencies for Submicron Particles Scavenged by Small Raindrops , 1974 .

[5]  K. Beard,et al.  Numerical Collision Efficiencies for Small Raindrops Colliding with Micron Size Particles , 1974 .

[6]  W. Slinn Some approximations for the wet and dry removal of particles and gases from the atmosphere , 1977 .

[7]  L. K. Peters,et al.  Field studies of atmospheric particulate concentration changes during precipitation , 1978 .

[8]  Laboratory Measurements of Particle Capture by Evaporating Cloud Drops , 1982 .

[9]  Collection efficiency of aerosol particles by raindrops , 1988 .

[10]  A. Kamra,et al.  Scavenging of aerosol particles by large water drops: 1. Neutral case , 1996 .

[11]  D. Chate,et al.  Collection efficiencies of large water drops collecting aerosol particles of various densities , 1997 .

[12]  V. C. Patel,et al.  Flow past a sphere up to a Reynolds number of 300 , 1999, Journal of Fluid Mechanics.

[13]  S. Orszag,et al.  Numerical investigation of transitional and weak turbulent flow past a sphere , 2000, Journal of Fluid Mechanics.

[14]  S. Friedlander,et al.  Smoke, dust, and haze , 2000 .

[15]  Sungsu Lee,et al.  A numerical study of the unsteady wake behind a sphere in a uniform flow at moderate Reynolds numbers , 2000 .

[16]  Kihyo Jung,et al.  Wet scrubbing of polydisperse aerosols by freely falling droplets , 2005 .

[17]  Marcin Lackowski,et al.  Wet electroscrubbers for state of the art gas cleaning. , 2006, Environmental science & technology.

[18]  S. H. Lee,et al.  Prediction for particle removal efficiency of a reverse jet scrubber , 2006 .

[19]  R. Jain,et al.  Comprehensive analysis for prediction of dust removal efficiency using twin-fluid atomization in a spray scrubber , 2008 .

[20]  Y. Kim,et al.  Relative contributions of individual phoretic effect in the below-cloud scavenging process , 2009 .

[21]  Steinar Kragset,et al.  Particle impaction on a cylinder in a crossflow as function of Stokes and Reynolds numbers , 2010, Journal of Fluid Mechanics.

[22]  Y. Kim,et al.  Derivation and verification of an aerosol dynamics expression for the below-cloud scavenging process using the moment method , 2010 .

[23]  Francesco Di Natale,et al.  Wet electrostatic scrubbers for the abatement of submicronic particulate , 2010 .

[24]  G. Beig,et al.  Below-cloud rain scavenging of atmospheric aerosols for aerosol deposition models , 2011 .

[25]  Numerical investigation of flow structures around a sphere , 2011 .

[26]  P. Nikrityuk,et al.  Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers , 2012 .

[27]  N. Jones,et al.  Particle capture by a circular cylinder in the vortex-shedding regime , 2013, Journal of Fluid Mechanics.

[28]  An experiment to measure raindrop collection efficiencies: influence of rear capture , 2014 .

[29]  Aolin Wang,et al.  Behavior of hydrophobic micron particles impacting on droplet surface , 2015 .