VEGF dose controls the coupling of angiogenesis and osteogenesis in engineered bone

[1]  J. Hubbell,et al.  Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration. , 2022, Acta biomaterialia.

[2]  A. Banfi,et al.  Fibrin-based factor delivery for therapeutic angiogenesis: friend or foe? , 2022, Cell and tissue research.

[3]  J. Hubbell,et al.  Robust Angiogenesis and Arteriogenesis in the Skin of Diabetic Mice by Transient Delivery of Engineered VEGF and PDGF-BB Proteins in Fibrin Hydrogels , 2021, Frontiers in Bioengineering and Biotechnology.

[4]  A. Banfi,et al.  Therapeutic vascularization in regenerative medicine , 2020, Stem cells translational medicine.

[5]  Yi Peng,et al.  Type H blood vessels in bone modeling and remodeling , 2020, Theranostics.

[6]  Anjali P. Kusumbe,et al.  Role of angiocrine signals in bone development, homeostasis and disease , 2019, Open Biology.

[7]  Michael G. Poulos,et al.  Targeting skeletal endothelium to ameliorate bone loss , 2018, Nature Medicine.

[8]  A. Banfi,et al.  It Takes Two to Tango: Coupling of Angiogenesis and Osteogenesis for Bone Regeneration , 2017, Front. Bioeng. Biotechnol..

[9]  R. Adams,et al.  Regulation of Hematopoiesis and Osteogenesis by Blood Vessel-Derived Signals. , 2016, Annual review of cell and developmental biology.

[10]  Kai Hu,et al.  The roles of vascular endothelial growth factor in bone repair and regeneration. , 2016, Bone.

[11]  B. Olsen,et al.  Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. , 2016, The Journal of clinical investigation.

[12]  Hernigou Philippe,et al.  Cell therapy in delayed unions and nonunions , 2016 .

[13]  Mikaël M. Martino,et al.  Extracellular Matrix and Growth Factor Engineering for Controlled Angiogenesis in Regenerative Medicine , 2015, Front. Bioeng. Biotechnol..

[14]  Philippe Rosset,et al.  Bone fracture healing: cell therapy in delayed unions and nonunions. , 2015, Bone.

[15]  B. Vollmar,et al.  Split for the cure: VEGF, PDGF-BB and intussusception in therapeutic angiogenesis. , 2014, Biochemical Society transactions.

[16]  Mikaël M. Martino,et al.  Long-lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF164 , 2014, Proceedings of the National Academy of Sciences.

[17]  B. Olsen,et al.  Distinct VEGF Functions During Bone Development and Homeostasis , 2014, Archivum Immunologiae et Therapiae Experimentalis.

[18]  R. Adams,et al.  Endothelial Notch activity promotes angiogenesis and osteogenesis in bone , 2014, Nature.

[19]  R. Adams,et al.  Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone , 2014, Nature.

[20]  I. Martin,et al.  Osteogenic graft vascularization and bone resorption by VEGF-expressing human mesenchymal progenitors. , 2013, Biomaterials.

[21]  Holger Gerhardt,et al.  VEGF and Notch in tip and stalk cell selection. , 2013, Cold Spring Harbor perspectives in medicine.

[22]  Heinz Redl,et al.  BMP‐2 but not VEGF or PDGF in fibrin matrix supports bone healing in a delayed‐union rat model , 2012, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[23]  H. Hazewinkel,et al.  A differential effect of bone morphogenetic protein-2 and vascular endothelial growth factor release timing on osteogenesis at ectopic and orthotopic sites in a large-animal model. , 2012, Tissue engineering. Part A.

[24]  R. Baron,et al.  Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. , 2012, The Journal of clinical investigation.

[25]  A. Delgado,et al.  In vivo osteogenic response to different ratios of BMP-2 and VEGF released from a biodegradable porous system. , 2012, Journal of biomedical materials research. Part A.

[26]  W. Van den Broeck,et al.  Intussusceptive Angiogenesis: A Biologically Relevant Form of Angiogenesis , 2012, Journal of Vascular Research.

[27]  M. Giacca,et al.  VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond , 2012, Gene Therapy.

[28]  Rozalia Dimitriou,et al.  Bone regeneration: current concepts and future directions , 2011, BMC medicine.

[29]  James CURRENT CONCEPTS AND FUTURE DIRECTIONS OF , 2011 .

[30]  R. Kalluri,et al.  Notch in Tip and Stalk Cell Selection , 2011 .

[31]  R. Adams,et al.  Dynamics of endothelial cell behavior in sprouting angiogenesis. , 2010, Current opinion in cell biology.

[32]  N. Ferrara Binding to the Extracellular Matrix and Proteolytic Processing: Two Key Mechanisms Regulating Vascular Endothelial Growth Factor Action , 2010, Molecular biology of the cell.

[33]  Richard O. Hynes,et al.  The Extracellular Matrix: Not Just Pretty Fibrils , 2009, Science.

[34]  Michael J Yaszemski,et al.  Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. , 2009, Biomaterials.

[35]  Antonios G Mikos,et al.  Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. , 2008, Bone.

[36]  M. Hincke,et al.  Fibrin: a versatile scaffold for tissue engineering applications. , 2008, Tissue engineering. Part B, Reviews.

[37]  J. Hubbell,et al.  The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesis. , 2008, Biomaterials.

[38]  B. Olsen,et al.  Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. , 2002, Development.

[39]  P. Carmeliet,et al.  Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188 , 2000, Mechanisms of Development.

[40]  J. Hubbell,et al.  Covalently conjugated VEGF--fibrin matrices for endothelialization. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[41]  P. Carmeliet,et al.  Molecular mechanisms of blood vessel growth. , 2001, Cardiovascular research.

[42]  Marcel Karperien,et al.  Printed in U.S.A. Copyright © 2000 by The Endocrine Society Expression of Vascular Endothelial Growth Factors and Their Receptors during Osteoblast Differentiation , 2022 .

[43]  Pamela J. Hines,et al.  Repair and Regeneration. , 2017, Science.