Design and analysis of a spherical mobile robot

A spherical mobile robot, rolling on a plane with the help of two internal rotors and working on the principle of conservation of angular momentum has recently been fabricated in our group. The robot is a classic nonholonomic system. Path planning algorithms exist in the literature for certain classes of nonholonomic systems like chained form systems, nilpotent systems and differentially flat systems. The model of this spherical mobile robot however, does not fall into any of these classes and hence these existing algorithms are rendered inapplicable to this system. The final objective is to make this robot as a testbed for feasible path planning and feedback control algorithms.

[1]  Atsushi Koshiyama,et al.  Design and Control of an All-Direction Steering Type Mobile Robot , 1993, Int. J. Robotics Res..

[2]  Tomi Ylikorpi,et al.  Ball-Shaped Robots: An Historical Overview and Recent Developments at TKK , 2005, FSR.

[3]  P. Nikravesh Spatial Kinematic and Dynamic Analysis with Euler Parameters , 1984 .

[4]  Ravi N. Banavar,et al.  Motion analysis of a spherical mobile robot , 2009, Robotica.

[5]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[6]  Tuanjie Li,et al.  Approaches to Motion Planning for a Spherical Robot Based on Differential Geometric Control Theory , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[7]  Richard M. Murray,et al.  Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems , 1994, Math. Control. Signals Syst..

[8]  Ronald L. Huston,et al.  Dynamics of Multibody Systems , 1988 .

[9]  K. Spring Euler parameters and the use of quaternion algebra in the manipulation of finite rotations: A review , 1986 .

[10]  Ranjan Mukherjee,et al.  Reconfiguration of a Rolling Sphere: A Problem in Evolute-Involute Geometry , 2006 .

[11]  Antonio Bicchi,et al.  Planning motions of rolling surfaces , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[12]  S. Altmann Rotations, Quaternions, and Double Groups , 1986 .

[13]  Benoît Raucent,et al.  ROLLMOBS, a new drive system for omnimobile robots , 2001, Robotica.

[14]  Hagen Schempf,et al.  Cyclops: miniature robotic reconnaissance system , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[15]  Roger A. Wehage Quaternions and Euler Parameters — A Brief Exposition , 1984 .

[16]  Parviz E. Nikravesh,et al.  Computer-aided analysis of mechanical systems , 1988 .

[17]  Sunil K. Agrawal,et al.  Spherical rolling robot: a design and motion planning studies , 2000, IEEE Trans. Robotics Autom..

[18]  Rhodri H. Armour,et al.  Rolling in nature and robotics: A review , 2006 .

[19]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[20]  E. Haug Computer Aided Analysis and Optimization of Mechanical System Dynamics , 1984 .

[21]  Zexiang Li,et al.  Motion of two rigid bodies with rolling constraint , 1990, IEEE Trans. Robotics Autom..

[22]  R. Mukherjee,et al.  Motion Planning for a Spherical Mobile Robot: Revisiting the Classical Ball-Plate Problem , 2002 .

[23]  Panu Harmo,et al.  Moving Eye - Interactive Telepresence Over Internet with a Ball Shaped Mobile Robot , 2001 .

[24]  Ranjan Mukherjee,et al.  Exponential stabilization of the rolling sphere , 2004, Autom..

[25]  Yan Wang,et al.  Motion control of a spherical mobile robot , 1996, Proceedings of 4th IEEE International Workshop on Advanced Motion Control - AMC '96 - MIE.