Differential Game Logic for Hybrid Games

Abstract : We introduce differential game logic (dGL) for specifying and verifying properties of hybrid games, i.e., determined, sequential/dynamic, non-cooperative, zero-sum games of perfect information on hybrid systems that combine discrete and continuous dynamics. Unlike hybrid systems hybrid games allow choices in the system dynamics to be resolved by different players with different objectives. The logic dGL can be used to study properties of the resulting adversarial behavior. It unifies differential dynamic logic for hybrid systems with game logic. We define a regular modal semantics for dGL, present a proof calculus for dGL, and prove soundness. We identify separating axioms, i.e., the axioms that distinguish dGL and its game aspects from logics for hybrid systems. We also define an operational game semantics, prove equivalence, and prove determinacy.

[1]  J. Lygeros,et al.  A game theoretic approach to controller design for hybrid systems , 2000, Proceedings of the IEEE.

[2]  Derick Wood,et al.  Theory of computation , 1986 .

[3]  André Platzer,et al.  Stochastic Differential Dynamic Logic for Stochastic Hybrid Programs , 2011, CADE.

[4]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[5]  P. Hartman Ordinary Differential Equations , 1965 .

[6]  J. Hintikka,et al.  Game-Theoretical Semantics , 1997 .

[7]  Eric van Damme,et al.  Non-Cooperative Games , 2000 .

[8]  Mahesh Viswanathan,et al.  Specifications for decidable hybrid games , 2011, Theor. Comput. Sci..

[9]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[10]  S. Shankar Sastry,et al.  Conflict resolution for air traffic management: a study in multiagent hybrid systems , 1998, IEEE Trans. Autom. Control..

[11]  R. Parikh The logic of games and its applications , 1985 .

[12]  Kim G. Larsen,et al.  The Impressive Power of Stopwatches , 2000, CONCUR.

[13]  Alexandre M. Bayen,et al.  Computational techniques for the verification of hybrid systems , 2003, Proc. IEEE.

[14]  Thomas A. Henzinger,et al.  Rectangular Hybrid Games , 1999, CONCUR.

[15]  P. Varaiya,et al.  Differential games , 1971 .

[16]  Patricia Bouyer,et al.  Weighted O-Minimal Hybrid Systems Are More Decidable Than Weighted Timed Automata! , 2007, LFCS.

[17]  Rohit Parikh,et al.  Game Logic - An Overview , 2003, Stud Logica.

[18]  A. Nerode,et al.  Logics for hybrid systems , 2000, Proceedings of the IEEE.

[19]  André Platzer,et al.  Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics , 2010 .

[20]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[21]  Vaughan R. Pratt,et al.  SEMANTICAL CONSIDERATIONS ON FLOYD-HOARE LOGIC , 1976, FOCS 1976.

[22]  Yan Gao,et al.  On the Reachability Problem for Uncertain Hybrid Systems , 2007, IEEE Transactions on Automatic Control.

[23]  Alexandre M. Bayen,et al.  A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games , 2005, IEEE Transactions on Automatic Control.

[24]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[25]  Eugene Asarin,et al.  Achilles and the Tortoise Climbing Up the Arithmetical Hierarchy , 1995, J. Comput. Syst. Sci..

[26]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[27]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[28]  André Platzer,et al.  The Complete Proof Theory of Hybrid Systems , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[29]  André Platzer,et al.  Differential Dynamic Logic for Hybrid Systems , 2008, Journal of Automated Reasoning.