Gas Production from the Radiolysis of Water Adsorbed on ZnO Nanoparticles

The presence of a metal oxide surface can significantly alter the product yield distribution during the radiolysis of water with some metal oxides such as ZrO2 or CeO2, increasing the yield of H2 d...

[1]  K. Webb,et al.  Effects of relative humidity, surface area and production route on hydrogen yields from water on the surface of plutonium dioxide , 2013, Frontiers in Nuclear Engineering.

[2]  J. LaVerne,et al.  Radiolysis of water with aluminum oxide surfaces , 2017 .

[3]  S. Pimblott,et al.  Radiolytic hydrogen generation at silicon carbide–water interfaces , 2016 .

[4]  D. Bartels,et al.  Source of Molecular Hydrogen in High-Temperature Water Radiolysis. , 2016, The journal of physical chemistry. A.

[5]  J. LaVerne,et al.  Gamma and He Ion Radiolysis of Copper Oxides , 2015 .

[6]  J. LaVerne,et al.  Radiation-Induced Chemical Changes to Iron Oxides. , 2015, The journal of physical chemistry. B.

[7]  K. Bobrowski,et al.  Molecular hydrogen formation during water radiolysis in the presence of zirconium dioxide , 2015, Journal of Radioanalytical and Nuclear Chemistry.

[8]  S. Karmakar,et al.  Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method , 2013 .

[9]  J. LaVerne,et al.  Radiolysis of Water on ZrO2 Nanoparticles , 2012 .

[10]  S. L. Caër,et al.  Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation , 2011 .

[11]  J. LaVerne,et al.  Radiation-induced decomposition of anion exchange resins , 2010 .

[12]  J. LaVerne,et al.  Surface species produced in the radiolysis of zirconia nanoparticles. , 2007, The Journal of chemical physics.

[13]  J. F. Young,et al.  Humidity control in the laboratory using salt solutions—a review , 2007 .

[14]  P. Rotureau,et al.  Radiolysis of confined water: molecular hydrogen formation. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[15]  A. Hiroki,et al.  Decomposition of hydrogen peroxide at water-ceramic oxide interfaces. , 2005, The journal of physical chemistry. B.

[16]  J. LaVerne,et al.  H2 Production in the Radiolysis of Water on UO2 and Other Oxides , 2003 .

[17]  J. LaVerne,et al.  H 2 Production in the Radiolysis of Aqueous SiO 2 Suspensions and Slurries , 2003 .

[18]  L. Tandon,et al.  H2 Production in the Radiolysis of Water on CeO2 and ZrO2 , 2002 .

[19]  N. G. Petrik,et al.  Interfacial Energy Transfer during Gamma Radiolysis of Water on the Surface of ZrO2 and Some Other Oxides , 2001 .

[20]  R. Puyanē Effectiveness of isotope depleted ZnO to minimize radiation build-up in boiling water nuclear reactors , 1996 .

[21]  S. Sandford,et al.  Mid- and far-infrared spectroscopy of ices: optical constants and integrated absorbances. , 1993, The Astrophysical journal. Supplement series.

[22]  E. Tachikawa,et al.  Radiolytic Gas Production from Tritiated Water Adsorbed on Molecular Sieve 5A , 1987 .

[23]  J. Burr Radiation in Chemistry , 1929, Science.

[24]  A. O. Allen,et al.  Hydrogen Atoms in the Radiolysis of Water , 1959 .

[25]  A. Rees,et al.  The Nature of the Thermal Color Change in Zinc Oxide , 1952 .

[26]  E. R. Grilly,et al.  The Thermal Conductivites of Eight Common Gases between 80° and 380°K , 1946 .