Network Centrality: An Introduction

Centrality is a key property of complex networks that influences the behavior of dynamical processes, like synchronization and epidemic spreading, and can bring important information about the organization of complex systems, like our brain and society. There are many metrics to quantify the node centrality in networks. Here, we review the main centrality measures and discuss their main features and limitations. The influence of network centrality on epidemic spreading and synchronization is also pointed out in this chapter. Moreover, we present the application of centrality measures to understand the function of complex systems, including biological and cortical networks. Finally, we discuss some perspectives and challenges to generalize centrality measures for multilayer and temporal networks.

[1]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[2]  Dragomir R. Radev,et al.  Identifying gene-disease associations using centrality on a literature mined gene-interaction network , 2008, ISMB.

[3]  Melanie Mitchell,et al.  Complexity - A Guided Tour , 2009 .

[4]  Claudio Castellano,et al.  Leveraging percolation theory to single out influential spreaders in networks , 2016, Physical review. E.

[5]  E. Ott,et al.  Onset of synchronization in large networks of coupled oscillators. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Thomas K. D. M. Peron,et al.  The Kuramoto model in complex networks , 2015, 1511.07139.

[7]  Luciano da F. Costa,et al.  Border detection in complex networks , 2009, 0902.3068.

[8]  L. D. Costa,et al.  Accessibility in complex networks , 2008 .

[9]  Santo Fortunato,et al.  Community detection in networks: A user guide , 2016, ArXiv.

[10]  José F. Fontanari,et al.  The impact of centrality on cooperative processes , 2016, Physical review. E.

[11]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[12]  M. Keeling,et al.  Modeling Infectious Diseases in Humans and Animals , 2007 .

[13]  Sergio Gómez,et al.  Explosive synchronization transitions in scale-free networks. , 2011, Physical review letters.

[14]  A. Pikovsky,et al.  Synchronization: Theory and Application , 2003 .

[15]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[16]  Norbert Marwan,et al.  The backbone of the climate network , 2009, 1002.2100.

[17]  Shinichiro Wachi,et al.  Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues , 2005, Bioinform..

[18]  Albert-Lszl Barabsi,et al.  Network Science , 2016, Encyclopedia of Big Data.

[19]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[20]  Mark E. J. Newman,et al.  Spectral community detection in sparse networks , 2013, ArXiv.

[21]  U. Brandes A faster algorithm for betweenness centrality , 2001 .

[22]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[23]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[24]  Yaneer Bar-Yam,et al.  Dynamics Of Complex Systems , 2019 .

[25]  Chris Arney Sync: The Emerging Science of Spontaneous Order , 2007 .

[26]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[27]  J. Levine,et al.  Surfing the p53 network , 2000, Nature.

[28]  Sergio Gómez,et al.  Ranking in interconnected multilayer networks reveals versatile nodes , 2015, Nature Communications.

[29]  Xiao Zhang,et al.  Localization and centrality in networks , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Luciano da Fontoura Costa,et al.  Structure and dynamics of functional networks in child-onset schizophrenia , 2014, Clinical Neurophysiology.

[31]  M. DePamphilis,et al.  HUMAN DISEASE , 1957, The Ulster Medical Journal.

[32]  Giorgio Fagiolo,et al.  World-trade web: topological properties, dynamics, and evolution. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  A. Barabasi,et al.  Network science , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[35]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[36]  Mark E. J. Newman A measure of betweenness centrality based on random walks , 2005, Soc. Networks.

[37]  Elchanan Mossel,et al.  Spectral redemption in clustering sparse networks , 2013, Proceedings of the National Academy of Sciences.

[38]  Lucas Antiqueira,et al.  Analyzing and modeling real-world phenomena with complex networks: a survey of applications , 2007, 0711.3199.

[39]  Jürgen Kurths,et al.  Tweaking synchronization by connectivity modifications. , 2016, Physical review. E.

[40]  Piet Van Mieghem,et al.  Epidemic processes in complex networks , 2014, ArXiv.

[41]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[42]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[43]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[44]  Sergio Gómez,et al.  Ranking in interconnected multilayer networks reveals versatile nodes , 2013, Nature Communications.

[45]  Lev Muchnik,et al.  Identifying influential spreaders in complex networks , 2010, 1001.5285.

[46]  T. Ichinomiya Frequency synchronization in a random oscillator network. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  J. Borge-Holthoefer,et al.  Discrete-time Markov chain approach to contact-based disease spreading in complex networks , 2009, 0907.1313.

[48]  Sergey N. Dorogovtsev,et al.  K-core Organization of Complex Networks , 2005, Physical review letters.

[49]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[50]  O. Sporns,et al.  Network centrality in the human functional connectome. , 2012, Cerebral cortex.

[51]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[52]  R. Guimerà,et al.  The worldwide air transportation network: Anomalous centrality, community structure, and cities' global roles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.