Living Supramolecular Polymerization of an Aza-BODIPY Dye Controlled by a Hydrogen-Bond Accepting Triazole Unit Introduced by Click Chemistry.

An aza-BODIPY dye 1 bearing two hydrophobic "fan-shaped" tridodecyloxybenzamide pendants through 1,2,3-triazole linkages was synthesized by "click" reaction and characterized. 1H NMR studies indicated that dye 1 exhibited variable conformations through intramolecular H-bonding interaction, which is beneficial for the polymorphism of aggregation. The thermodynamic, structural, and kinetic aspect for the supramolecular polymerization of dye 1 was investigated by UV/Vis absorption spectroscopy, IR spectroscopy, AFM, TEM, and SEM. The results revealed the biphasic aggregation pathways of dye 1, leading to the formation of off pathway, metastable Agg. I and thermodynamically stable Agg. II with distinct H-aggregation spectra and nanoscale morphology. The living manner of the supramolecular polymerization of dye 1 was demonstrated in seeded polymerization experiments with temperature-modulated successive cooling-heating cycles. Moreover, at temperatures higher than 298 K, the polymerization cycles exhibit distinct kinetic character in contrast to the typical living supramolecular polymerization behaviour at lower temperatures. This observation could be explained by a proposed mechanism in which the accumulative effect of the seeds generated by thermal transformation at high temperatures was considered.

[1]  G. Fernandez,et al.  Revision komplexer supramolekularer Polymerisation unter kinetischer und thermodynamischer Kontrolle , 2019 .

[2]  F. Würthner,et al.  Supramolecular Block Copolymers by Seeded Living Polymerization of Perylene Bisimides. , 2019, Journal of the American Chemical Society.

[3]  Jonas Matern,et al.  Revising Complex Supramolecular Polymerization under Kinetic and Thermodynamic Control , 2019, Angewandte Chemie.

[4]  M. Takeuchi,et al.  Living supramolecular polymerization based on reversible deactivation of a monomer by using a ‘dummy’ monomer† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02151e , 2019, Chemical science.

[5]  F. Würthner,et al.  Supramolecular Polymorphism in One-Dimensional Self-Assembly by Kinetic Pathway Control. , 2019, Journal of the American Chemical Society.

[6]  Sougata Datta,et al.  Supramolecular Polymers Capable of Controlling Their Topology. , 2019, Accounts of chemical research.

[7]  T. Aida,et al.  Nematic-to-columnar mesophase transition by in situ supramolecular polymerization , 2019, Science.

[8]  L. Sánchez,et al.  Kinetic Traps to Activate Stereomutation in Supramolecular Polymers. , 2018, Angewandte Chemie.

[9]  L. Sánchez,et al.  Kinetic Traps to Activate Stereomutation in Supramolecular Polymers , 2018, Angewandte Chemie.

[10]  Zhijian Chen,et al.  Coupled Cooperative Supramolecular Polymerization: A New Model Applied to the Competing Aggregation Pathways of an Amphiphilic aza-BODIPY Dye into Spherical and Rod-Like Aggregates. , 2018, Chemistry.

[11]  R. Harniman,et al.  Living Supramolecular Polymerisation of Perylene Diimide Amphiphiles by Seeded Growth under Kinetic Control. , 2018, Chemistry.

[12]  L. Sánchez,et al.  Exploiting NH···Cl Hydrogen Bonding Interactions in Cooperative Metallosupramolecular Polymerization. , 2018, Macromolecular rapid communications.

[13]  H. Bermudez,et al.  Living Supramolecular Polymerization of DNA. , 2018, Macromolecular rapid communications.

[14]  S. Pané,et al.  Self-assembled materials and supramolecular chemistry within microfluidic environments: from common thermodynamic states to non-equilibrium structures , 2018, Chemical Society reviews.

[15]  L. Sánchez,et al.  Pathway Complexity Versus Hierarchical Self-Assembly in N-Annulated Perylenes: Structural Effects in Seeded Supramolecular Polymerization. , 2018, Angewandte Chemie.

[16]  F. Würthner,et al.  Pathway complexity in the self-assembly of a zinc chlorin model system of natural bacteriochlorophyll J-aggregates† †Electronic supplementary information (ESI) available: Materials and methods, supplementary figures and a table. See DOI: 10.1039/c7sc03725b , 2018, Chemical science.

[17]  L. Sánchez,et al.  Tunable Energy Landscapes to Control Pathway Complexity in Self-Assembled N-Heterotriangulenes: Living and Seeded Supramolecular Polymerization. , 2018, Small.

[18]  F. Würthner,et al.  Living Supramolecular Polymerization of a Perylene Bisimide Dye into Fluorescent J-Aggregates. , 2017, Angewandte Chemie.

[19]  E. W. Meijer,et al.  From supramolecular polymers to multi-component biomaterials. , 2017, Chemical Society reviews.

[20]  Yao-Xin Lin,et al.  Recent Advances in Nanotechnology for Autophagy Detection. , 2017, Small.

[21]  W. Binder,et al.  Supramolecular H-bonded three-arm star polymers by efficient combination of RAFT polymerization and thio-bromo “click” reaction , 2017 .

[22]  I. Manners,et al.  Monodisperse Fiber-like Micelles of Controlled Length and Composition with an Oligo(p-phenylenevinylene) Core via "Living" Crystallization-Driven Self-Assembly. , 2017, Journal of the American Chemical Society.

[23]  Zhijian Chen,et al.  Near-IR Absorbing J-Aggregate of an Amphiphilic BF2 -Azadipyrromethene Dye by Kinetic Cooperative Self-Assembly. , 2017, Angewandte Chemie.

[24]  E. W. Meijer,et al.  Unravelling the Pathway Complexity in Conformationally Flexible N‐Centered Triarylamine Trisamides , 2016, Chemistry.

[25]  S. Yagai,et al.  Photoregulated Living Supramolecular Polymerization Established by Combining Energy Landscapes of Photoisomerization and Nucleation-Elongation Processes. , 2016, Journal of the American Chemical Society.

[26]  E. W. Meijer,et al.  Effect of H-Bonding on Order Amplification in the Growth of a Supramolecular Polymer in Water. , 2016, Journal of the American Chemical Society.

[27]  I. Manners,et al.  Monodisperse Cylindrical Micelles of Controlled Length with a Liquid-Crystalline Perfluorinated Core by 1D "Self-Seeding". , 2016, Angewandte Chemie.

[28]  E. W. Meijer,et al.  Pathway Complexity in the Enantioselective Self-Assembly of Functional Carbonyl-Bridged Triarylamine Trisamides. , 2016, Journal of the American Chemical Society.

[29]  Jincai Zhao,et al.  Fabrication of Chiral-Selective Nanotubular Heterojunctions through Living Supramolecular Polymerization. , 2016, Angewandte Chemie.

[30]  D. O’Shea,et al.  Azadipyrromethenes: from traditional dye chemistry to leading edge applications. , 2016, Chemical Society reviews.

[31]  F. Würthner,et al.  Impact of Alkyl Spacer Length on Aggregation Pathways in Kinetically Controlled Supramolecular Polymerization. , 2016, Journal of the American Chemical Society.

[32]  Ayyappanpillai Ajayaghosh,et al.  Living supramolecular polymerization , 2015, Science.

[33]  Masayuki Takeuchi,et al.  Mechanism of self-assembly process and seeded supramolecular polymerization of perylene bisimide organogelator. , 2015, Journal of the American Chemical Society.

[34]  R. Harniman,et al.  Branched micelles by living crystallization-driven block copolymer self-assembly under kinetic control. , 2015, Journal of the American Chemical Society.

[35]  Tadashi Mori,et al.  A rational strategy for the realization of chain-growth supramolecular polymerization , 2015, Science.

[36]  A. Ajayaghosh,et al.  Oligo(phenylenevinylene) hybrids and self-assemblies: versatile materials for excitation energy transfer. , 2014, Chemical Society reviews.

[37]  Yongjun Li,et al.  Application of “Click” Chemistry to the Construction of Supramolecular Functional Systems , 2014 .

[38]  Ulrich S Schubert,et al.  Beyond click chemistry - supramolecular interactions of 1,2,3-triazoles. , 2014, Chemical Society reviews.

[39]  Masayuki Takeuchi,et al.  Living supramolecular polymerization realized through a biomimetic approach , 2014, Nature Chemistry.

[40]  F. Würthner,et al.  Chlorophyll J-aggregates: from bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics. , 2013, Accounts of chemical research.

[41]  A. Hashidzume,et al.  Copper-catalyzed azide-alkyne cycloaddition oligomerization of 3-azido-1-propyne derivatives , 2013 .

[42]  Tom F A de Greef,et al.  Controlling chemical self-assembly by solvent-dependent dynamics. , 2012, Journal of the American Chemical Society.

[43]  H. Yamada,et al.  Self-organization of hydrogen-bonding naphthalene chromophores into J-type nanorings and H-type nanorods: impact of regioisomerism. , 2012, Angewandte Chemie.

[44]  T. Aida,et al.  Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures. , 2012, Accounts of chemical research.

[45]  Zhan-Ting Li,et al.  A 1,4-diphenyl-1,2,3-triazole-based β-turn mimic constructed by click chemistry. , 2012, The Journal of organic chemistry.

[46]  E. W. Meijer,et al.  Pathway complexity in supramolecular polymerization , 2012, Nature.

[47]  Hua Lu,et al.  A selective colorimetric and fluorometric ammonium ion sensor based on the H-aggregation of an aza-BODIPY with fused pyrazine rings. , 2011, Chemical communications.

[48]  N. Park,et al.  Complementary hydrogen bonding between a clicked C3-symmetric triazole derivative and carboxylic acids for columnar liquid-crystalline assemblies. , 2011, Angewandte Chemie.

[49]  Frank Würthner,et al.  J‐Aggregate: von ihrer zufälligen Entdeckung bis zum gezielten supramolekularen Aufbau funktioneller Farbstoffmaterialien , 2011 .

[50]  F. Würthner,et al.  J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. , 2011, Angewandte Chemie.

[51]  I. Manners,et al.  Pointed-oval-shaped micelles from crystalline-coil block copolymers by crystallization-driven living self-assembly. , 2010, Angewandte Chemie.

[52]  A. Flood,et al.  Intramolecular hydrogen bonds preorganize an aryl-triazole receptor into a crescent for chloride binding. , 2010, Organic letters.

[53]  A. Ajayaghosh,et al.  A complementary guest induced morphology transition in a two-component multiple H-bonding self-assembly. , 2010, Chemical communications.

[54]  E. W. Meijer,et al.  How to distinguish isodesmic from cooperative supramolecular polymerisation. , 2010, Chemistry.

[55]  Takuzo Aida,et al.  Dendrimer porphyrins and phthalocyanines. , 2009, Chemical reviews.

[56]  Z. Zuo,et al.  Light harvesting and efficient energy transfer in dendritic systems: new strategy for functionalized near-infrared BF2-azadipyrromethenes. , 2009, Chemistry, an Asian journal.

[57]  Zhijian Chen,et al.  Self-assembled pi-stacks of functional dyes in solution: structural and thermodynamic features. , 2009, Chemical Society reviews.

[58]  Albert P H J Schenning,et al.  Supramolecular polymerization. , 2009, Chemical reviews.

[59]  S. Yagai,et al.  Recent advances in photoresponsive supramolecular self-assemblies. , 2008, Chemical Society reviews.

[60]  A. Flood,et al.  Pure C-H hydrogen bonding to chloride ions: a preorganized and rigid macrocyclic receptor. , 2008, Angewandte Chemie.

[61]  E. Powers,et al.  Mechanisms of protein fibril formation: nucleated polymerization with competing off-pathway aggregation. , 2008, Biophysical journal.

[62]  E. W. Meijer,et al.  About Supramolecular Assemblies of π-Conjugated Systems , 2005 .

[63]  Jeffrey S. Moore,et al.  Nucleation-elongation: a mechanism for cooperative supramolecular polymerization. , 2003, Organic & biomolecular chemistry.

[64]  E. W. Meijer,et al.  Supramolecular Polymers , 2000 .

[65]  K. Yase,et al.  Polymerization in Nanometer-Sized Fibers: Molecular Packing Order and Polymerizability , 2000 .

[66]  V. Bakulev,et al.  Synthesis and cyclization direction of 2-diazomalondiamide derivatives new rearrangement of 5-hydroxy-1,2,3-triazole-4-carboxamides , 1992 .

[67]  A. Zecchina,et al.  A vibrational assignment for 1,2,3-triazole , 1969 .

[68]  M. Kasha,et al.  The exciton model in molecular spectroscopy , 1965 .