A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids

Based on the total Lagrangian kinematical description, a discontinuous Galerkin (DG) discretization of the gas dynamics equations is developed for two-dimensional fluid flows on general unstructured grids. Contrary to the updated Lagrangian formulation, which refers to the current moving configuration of the flow, the total Lagrangian formulation refers to the fixed reference configuration, which is usually the initial one. In this framework, the Lagrangian and Eulerian descriptions of the kinematical and the physical variables are related by means of the Piola transformation. Here, we describe a cell-centered high-order DG discretization of the physical conservation laws. The geometrical conservation law, which governs the time evolution of the deformation gradient, is solved by means of a finite element discretization. This approach allows to satisfy exactly the Piola compatibility condition. Regarding the DG approach, it relies on the use of a polynomial space approximation which is spanned by a Taylor basis. The main advantage in using this type of basis relies on its adaptability regardless the shape of the cell. The numerical fluxes at the cell interfaces are computed employing a node-based solver which can be viewed as an approximate Riemann solver. We present numerical results to illustrate the robustness and the accuracy up to third-order of our DG method. First, we show its ability to accurately capture geometrical features of a flow region employing curvilinear grids. Second, we demonstrate the dramatic improvement in symmetry preservation for radial flows.

[1]  Dmitri Kuzmin,et al.  A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods , 2010, J. Comput. Appl. Math..

[2]  Rainald Löhner,et al.  A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids , 2008, J. Comput. Phys..

[3]  Veselin Dobrev,et al.  Curvilinear finite elements for Lagrangian hydrodynamics , 2011 .

[4]  I. Akkerman,et al.  Isogeometric analysis of Lagrangian hydrodynamics , 2013, J. Comput. Phys..

[5]  Chi-Wang Shu,et al.  A high order ENO conservative Lagrangian type scheme for the compressible Euler equations , 2007, J. Comput. Phys..

[6]  A. J. Barlow,et al.  A high order cell centred dual grid Lagrangian Godunov scheme , 2013 .

[7]  Juan Cheng,et al.  A Third Order Conservative Lagrangian Type Scheme on Curvilinear Meshes for the Compressible Euler Equations , 2008 .

[8]  Rémi Abgrall,et al.  Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics , 2011 .

[9]  Nathaniel R. Morgan,et al.  A cell-centered Lagrangian Godunov-like method for solid dynamics , 2013 .

[10]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[11]  M. Gurtin,et al.  The Mechanics and Thermodynamics of Continua , 2010 .

[12]  Pavel Váchal,et al.  Discretizations for weighted condition number smoothing on general unstructured meshes , 2011 .

[13]  A. J. Barlow,et al.  A compatible finite element multi‐material ALE hydrodynamics algorithm , 2008 .

[14]  Pierre-Henri Maire,et al.  Contribution to the numerical modeling of Inertial Confinement Fusion , 2011 .

[15]  David H. Sharp,et al.  A conservative Eulerian formulation of the equations for elastic flow , 1988 .

[16]  Bruno Després,et al.  A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..

[17]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[18]  M. Shashkov,et al.  The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .

[19]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..

[20]  Raphaël Loubère,et al.  3D staggered Lagrangian hydrodynamics scheme with cell‐centered Riemann solver‐based artificial viscosity , 2013 .

[21]  Michael Dumbser,et al.  Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes , 2013, 1302.3076.

[22]  Bruno Després,et al.  Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme , 2010, J. Comput. Phys..

[23]  Rémi Abgrall,et al.  A Lagrangian Discontinuous Galerkin‐type method on unstructured meshes to solve hydrodynamics problems , 2004 .

[24]  Tzanio V. Kolev,et al.  High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics , 2013 .

[25]  W. F. Noh Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .

[26]  Guglielmo Scovazzi,et al.  Stabilized shock hydrodynamics: II. Design and physical interpretation of the SUPG operator for Lagrangian computations☆ , 2007 .

[27]  M. Wilkins Calculation of Elastic-Plastic Flow , 1963 .

[28]  Raphaël Loubère,et al.  Staggered Lagrangian Discretization Based on Cell-Centered Riemann Solver and Associated Hydrodynamics Scheme , 2011 .

[29]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[30]  Pierre-Henri Maire,et al.  A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids , 2011 .

[31]  John K. Dukowicz,et al.  Vorticity errors in multidimensional Lagrangian codes , 1992 .

[32]  V. Ju,et al.  A Conservative Eulerian Formulation of the Equations for Elastic Flow , 2003 .

[33]  Mikhail Shashkov,et al.  Multi-Scale Lagrangian Shock Hydrodynamics on Q1/P0 Finite Elements: Theoretical Framework and Two-dimensional Computations. , 2008 .

[34]  M. Dumbser,et al.  High-Order Unstructured Lagrangian One-Step WENO Finite Volume Schemes for Non-Conservative Hyperbolic Systems: Applications to Compressible Multi-Phase Flows , 2013, 1304.4816.

[35]  Tzanio V. Kolev,et al.  A tensor artificial viscosity using a finite element approach , 2009, J. Comput. Phys..

[36]  R. Kidder,et al.  Laser-driven compression of hollow shells: power requirements and stability limitations , 1976 .

[37]  C. Airiau,et al.  Vorticity evolution on a separated wavy wall flow , 1999 .

[38]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[39]  Thomas J. R. Hughes,et al.  Stabilized shock hydrodynamics: I. A Lagrangian method , 2007 .

[40]  M. Shashkov,et al.  Elimination of Artificial Grid Distortion and Hourglass-Type Motions by Means of Lagrangian Subzonal Masses and Pressures , 1998 .

[41]  Benjamin Boutin,et al.  Extension of ALE methodology to unstructured conical meshes , 2011 .

[42]  C. C. Long,et al.  Isogeometric analysis of Lagrangian hydrodynamics: Axisymmetric formulation in the rz-cylindrical coordinates , 2014, J. Comput. Phys..

[43]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[44]  Tzanio V. Kolev,et al.  High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics , 2012, SIAM J. Sci. Comput..

[45]  Bruno Després,et al.  Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .

[46]  François Vilar,et al.  Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics , 2012 .

[47]  Stéphane Del Pino A curvilinear finite-volume method to solve compressible gas dynamics in semi-Lagrangian coordinates , 2010 .

[48]  Jérôme Breil,et al.  Hydrodynamic instabilities in axisymmetric geometry self-similar models and numerical simulations , 2005 .

[49]  Shudao Zhang,et al.  A new high-order discontinuous Galerkin spectral finite element method for Lagrangian gas dynamics in two-dimensions , 2011, J. Comput. Phys..

[50]  S. K. Trehan,et al.  Plasma oscillations (I) , 1960 .

[51]  Raphaël Loubère Une méthode particulaire lagrangienne de type Galerkin discontinu : Application à la mécanique des fluides et l'interaction laser/plasma , 2002 .

[52]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[53]  Constant Mazeran Sur la structure mathématique et l'approximation numérique de l'hydrodynamique lagrangienne bidimensionnelle , 2007 .

[54]  Walter B. Goad WAT: A Numerical Method for Two-Dimensional Unsteady Fluid Flow , 1960 .