A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids
暂无分享,去创建一个
[1] Dmitri Kuzmin,et al. A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods , 2010, J. Comput. Appl. Math..
[2] Rainald Löhner,et al. A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids , 2008, J. Comput. Phys..
[3] Veselin Dobrev,et al. Curvilinear finite elements for Lagrangian hydrodynamics , 2011 .
[4] I. Akkerman,et al. Isogeometric analysis of Lagrangian hydrodynamics , 2013, J. Comput. Phys..
[5] Chi-Wang Shu,et al. A high order ENO conservative Lagrangian type scheme for the compressible Euler equations , 2007, J. Comput. Phys..
[6] A. J. Barlow,et al. A high order cell centred dual grid Lagrangian Godunov scheme , 2013 .
[7] Juan Cheng,et al. A Third Order Conservative Lagrangian Type Scheme on Curvilinear Meshes for the Compressible Euler Equations , 2008 .
[8] Rémi Abgrall,et al. Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics , 2011 .
[9] Nathaniel R. Morgan,et al. A cell-centered Lagrangian Godunov-like method for solid dynamics , 2013 .
[10] Chi-Wang Shu,et al. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .
[11] M. Gurtin,et al. The Mechanics and Thermodynamics of Continua , 2010 .
[12] Pavel Váchal,et al. Discretizations for weighted condition number smoothing on general unstructured meshes , 2011 .
[13] A. J. Barlow,et al. A compatible finite element multi‐material ALE hydrodynamics algorithm , 2008 .
[14] Pierre-Henri Maire,et al. Contribution to the numerical modeling of Inertial Confinement Fusion , 2011 .
[15] David H. Sharp,et al. A conservative Eulerian formulation of the equations for elastic flow , 1988 .
[16] Bruno Després,et al. A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..
[17] Chi-Wang Shu,et al. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .
[18] M. Shashkov,et al. The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .
[19] Pierre-Henri Maire,et al. A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..
[20] Raphaël Loubère,et al. 3D staggered Lagrangian hydrodynamics scheme with cell‐centered Riemann solver‐based artificial viscosity , 2013 .
[21] Michael Dumbser,et al. Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes , 2013, 1302.3076.
[22] Bruno Després,et al. Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme , 2010, J. Comput. Phys..
[23] Rémi Abgrall,et al. A Lagrangian Discontinuous Galerkin‐type method on unstructured meshes to solve hydrodynamics problems , 2004 .
[24] Tzanio V. Kolev,et al. High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics , 2013 .
[25] W. F. Noh. Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .
[26] Guglielmo Scovazzi,et al. Stabilized shock hydrodynamics: II. Design and physical interpretation of the SUPG operator for Lagrangian computations☆ , 2007 .
[27] M. Wilkins. Calculation of Elastic-Plastic Flow , 1963 .
[28] Raphaël Loubère,et al. Staggered Lagrangian Discretization Based on Cell-Centered Riemann Solver and Associated Hydrodynamics Scheme , 2011 .
[29] Philip M. Gresho,et al. On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .
[30] Pierre-Henri Maire,et al. A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids , 2011 .
[31] John K. Dukowicz,et al. Vorticity errors in multidimensional Lagrangian codes , 1992 .
[32] V. Ju,et al. A Conservative Eulerian Formulation of the Equations for Elastic Flow , 2003 .
[33] Mikhail Shashkov,et al. Multi-Scale Lagrangian Shock Hydrodynamics on Q1/P0 Finite Elements: Theoretical Framework and Two-dimensional Computations. , 2008 .
[34] M. Dumbser,et al. High-Order Unstructured Lagrangian One-Step WENO Finite Volume Schemes for Non-Conservative Hyperbolic Systems: Applications to Compressible Multi-Phase Flows , 2013, 1304.4816.
[35] Tzanio V. Kolev,et al. A tensor artificial viscosity using a finite element approach , 2009, J. Comput. Phys..
[36] R. Kidder,et al. Laser-driven compression of hollow shells: power requirements and stability limitations , 1976 .
[37] C. Airiau,et al. Vorticity evolution on a separated wavy wall flow , 1999 .
[38] Rémi Abgrall,et al. A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..
[39] Thomas J. R. Hughes,et al. Stabilized shock hydrodynamics: I. A Lagrangian method , 2007 .
[40] M. Shashkov,et al. Elimination of Artificial Grid Distortion and Hourglass-Type Motions by Means of Lagrangian Subzonal Masses and Pressures , 1998 .
[41] Benjamin Boutin,et al. Extension of ALE methodology to unstructured conical meshes , 2011 .
[42] C. C. Long,et al. Isogeometric analysis of Lagrangian hydrodynamics: Axisymmetric formulation in the rz-cylindrical coordinates , 2014, J. Comput. Phys..
[43] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[44] Tzanio V. Kolev,et al. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics , 2012, SIAM J. Sci. Comput..
[45] Bruno Després,et al. Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .
[46] François Vilar,et al. Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics , 2012 .
[47] Stéphane Del Pino. A curvilinear finite-volume method to solve compressible gas dynamics in semi-Lagrangian coordinates , 2010 .
[48] Jérôme Breil,et al. Hydrodynamic instabilities in axisymmetric geometry self-similar models and numerical simulations , 2005 .
[49] Shudao Zhang,et al. A new high-order discontinuous Galerkin spectral finite element method for Lagrangian gas dynamics in two-dimensions , 2011, J. Comput. Phys..
[50] S. K. Trehan,et al. Plasma oscillations (I) , 1960 .
[51] Raphaël Loubère. Une méthode particulaire lagrangienne de type Galerkin discontinu : Application à la mécanique des fluides et l'interaction laser/plasma , 2002 .
[52] G. Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .
[53] Constant Mazeran. Sur la structure mathématique et l'approximation numérique de l'hydrodynamique lagrangienne bidimensionnelle , 2007 .
[54] Walter B. Goad. WAT: A Numerical Method for Two-Dimensional Unsteady Fluid Flow , 1960 .