Realization of a compact one-seed laser system for atom interferometer-based gravimeters.

A simple and compact design of the laser system is important for realization of compact atom interferometers (AIs). We design and realize a simple fiber bench-based 780-nm laser system used for 85Rb AI-based gravimeters. The laser system contains only one 780 nm seed laser, and the traditional frequency-doubling-module is not used. The Raman beams are shared with one pair of the cooling beams by using a liquid crystal variable retarder based polarization control technique. This laser system is applied to a compact AI-based gravimeter, and a best gravity measurement sensitivity of 230 μGal/Hz1/2 is achieved. The gravity measurements for more than one day are also performed, and the long-term stability of the gravimeter is 5.5 μGal.

[1]  Umberto Riccardi,et al.  The measurement of surface gravity , 2013, Reports on progress in physics. Physical Society.

[2]  M. Lours,et al.  A simple laser system for atom interferometry , 2014, 1406.5994.

[3]  Mingsheng Zhan,et al.  Gravitational-wave detection with matter-wave interferometers based on standing light waves , 2011, 1103.4897.

[4]  A. Landragin,et al.  Compact laser system for atom interferometry , 2005, physics/0510261.

[5]  M. Zhan,et al.  Location-dependent Raman transition in gravity-gradient measurements using dual atom interferometers , 2017 .

[6]  Yan Wei,et al.  Measurement of Local Gravity via a Cold Atom Interferometer , 2011 .

[7]  F. Sorrentino,et al.  Measurement of the gravity-field curvature by atom interferometry. , 2015, Physical review letters.

[8]  F. Sorrentino,et al.  Sensitivity limits of a Raman atom interferometer as a gravity gradiometer , 2013, 1312.3741.

[9]  G. Tino,et al.  Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects. , 2014, Physical review letters.

[10]  Bin Wang,et al.  Highly reliable optical system for a rubidium space cold atom clock. , 2016, Applied optics.

[11]  Q. Lin,et al.  A compact laser system for the cold atom gravimeter , 2016 .

[12]  C. Braxmaier,et al.  A compact and robust diode laser system for atom interferometry on a sounding rocket , 2016, 1606.00271.

[13]  F. Lienhart,et al.  Compact and robust laser system for onboard atom interferometry , 2009 .

[14]  Zhongkun Hu,et al.  Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter , 2013 .

[15]  M. Zhan,et al.  Continuous Dynamic Rotation Measurements Using a Compact Cold Atom Gyroscope , 2016 .

[16]  Savas Dimopoulos,et al.  Gravitational wave detection with atom interferometry , 2007, 0712.1250.

[17]  A. Landragin,et al.  Continuous Cold-Atom Inertial Sensor with 1  nrad/sec Rotation Stability. , 2016, Physical review letters.

[18]  N. Zahzam,et al.  Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices , 2016, 1610.02830.

[19]  X. Chen,et al.  Test of Equivalence Principle at 10(-8) Level by a Dual-Species Double-Diffraction Raman Atom Interferometer. , 2015, Physical review letters.

[20]  N. Zahzam,et al.  Multi-line fiber laser system for cesium and rubidium atom interferometry. , 2016, Optics express.

[21]  Michael Hohensee,et al.  Sources and technology for an atomic gravitational wave interferometric sensor , 2010, 1001.4821.

[22]  W. Schleich,et al.  Quantum test of the Universality of Free Fall using rubidium and potassium , 2014, The European Physical Journal D.

[23]  J. Livas,et al.  Laser frequency stabilization and control through offset sideband locking to optical cavities. , 2008, Optics express.

[24]  Arnaud Landragin,et al.  Metrology with Atom Interferometry: Inertial Sensors from Laboratory to Field Applications , 2016, 1601.06082.

[25]  Achim Peters,et al.  Mobile quantum gravity sensor with unprecedented stability , 2015, 1512.05660.

[26]  G. Biedermann,et al.  High data-rate atom interferometer for measuring acceleration , 2011, 1109.4610.

[27]  A. Landragin,et al.  Development of compact cold-atom sensors for inertial navigation , 2016, SPIE Photonics Europe.

[28]  F. Sorrentino,et al.  Bragg interferometer for gravity gradient measurements , 2016 .

[29]  Jun Luo,et al.  Test of the Universality of Free Fall with Atoms in Different Spin Orientations. , 2015, Physical review letters.

[30]  M. Kasevich,et al.  Sensitive absolute-gravity gradiometry using atom interferometry , 2001, physics/0105088.

[31]  Chu,et al.  Theoretical analysis of velocity-selective Raman transitions. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[32]  A. Landragin,et al.  The influence of transverse motion within an atomic gravimeter , 2011 .

[33]  A. Landragin,et al.  Dual-wavelength laser source for onboard atom interferometry. , 2011, Optics letters.

[34]  A. Peters,et al.  High-precision gravity measurements using atom interferometry , 1998 .

[35]  A. Peters,et al.  First gravity measurements using the mobile atom interferometer GAIN , 2013 .

[36]  F. Lienhart,et al.  Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm , 2007 .

[37]  T. Gustavson,et al.  Precision Rotation Measurements with an Atom Interferometer Gyroscope , 1997 .

[38]  M. Kasevich,et al.  Multiaxis inertial sensing with long-time point source atom interferometry. , 2013, Physical review letters.

[39]  O. Carraz,et al.  Narrow linewidth single laser source system for onboard atom interferometry , 2014, 1407.4684.