Simulation study of the structure and phase behavior of ceramide bilayers and the role of lipid head group chemistry.

Ceramides are known to be a key component of the stratum corneum, the outermost protective layer of the skin that controls barrier function. In this work, molecular dynamics simulations are used to examine the behavior of ceramide bilayers, focusing on non-hydroxy sphingosine (NS) and non-hydroxy phytosphingosine (NP) ceramides. Here, we propose a modified version of the CHARMM force field for ceramide simulation, which is directly compared to the more commonly used GROMOS-based force field of Berger (Biophys. J. 1997, 72); while both force fields are shown to closely match experiment from a structural standpoint at the physiological temperature of skin, the modified CHARMM force field is better able to capture the thermotropic phase transitions observed in experiment. The role of ceramide chemistry and its impact on structural ordering is examined by comparing ceramide NS to NP, using the validated CHARMM-based force field. These simulations demonstrate that changing from ceramide NS to NP results in changes to the orientation of the OH groups in the lipid headgroups. The arrangement of OH groups perpendicular to the bilayer normal for ceramide NP, verse parallel for NS, results in the formation of a distinct hydrogen bonding network, that is ultimately responsible for shifting the gel-to-liquid phase transition to higher temperature, in direct agreement with experiment.

[1]  R. Mendelsohn,et al.  Oleic acid disorders stratum corneum lipids in Langmuir monolayers. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[2]  Anand Srivastava,et al.  A Hybrid Approach for Highly Coarse-grained Lipid Bilayer Models. , 2013, Journal of chemical theory and computation.

[3]  Richard Tjörnhammar,et al.  Phase transitions in coarse-grained lipid bilayers containing cholesterol by molecular dynamics simulations. , 2012, Biophysical journal.

[4]  Thomas J. Piggot,et al.  Molecular Dynamics Simulations of Phosphatidylcholine Membranes: A Comparative Force Field Study. , 2012, Journal of chemical theory and computation.

[5]  R. Neubert,et al.  The impact of ceramides NP and AP on the nanostructure of stratum corneum lipid bilayer. Part I: neutron diffraction and 2H NMR studies on multilamellar models based on ceramides with symmetric alkyl chain length distribution , 2012 .

[6]  Sagar A. Pandit,et al.  Mixing properties of sphingomyelin ceramide bilayers: a simulation study. , 2012, The journal of physical chemistry. B.

[7]  Jian Dai,et al.  Modification of Lipid Bilayer Structure by Diacylglycerol: A Comparative Study of Diacylglycerol and Cholesterol. , 2012, Journal of chemical theory and computation.

[8]  Alexander Vogel,et al.  Characterisation of a new ceramide EOS species: synthesis and investigation of the thermotropic phase behaviour and influence on the bilayer architecture of stratum corneum lipid model membranes , 2011 .

[9]  Alexander D. MacKerell,et al.  Development of the CHARMM Force Field for Lipids. , 2011, The journal of physical chemistry letters.

[10]  Roland Faller,et al.  Bilayer structure and lipid dynamics in a model stratum corneum with oleic acid. , 2011, The journal of physical chemistry. B.

[11]  Sharon C. Glotzer,et al.  Characterizing Structure Through Shape Matching and Applications to Self Assembly , 2010, ArXiv.

[12]  S. Neya,et al.  Computational analysis of water residence on ceramide and sphingomyelin bilayer membranes. , 2010, Journal of molecular graphics & modelling.

[13]  Patrick Garidel,et al.  The microstructure of the stratum corneum lipid barrier: mid-infrared spectroscopic studies of hydrated ceramide:palmitic acid:cholesterol model systems. , 2010, Biophysical chemistry.

[14]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[15]  Wilfred F. van Gunsteren,et al.  A new force field for simulating phosphatidylcholine bilayers , 2010, J. Comput. Chem..

[16]  J. Bouwstra,et al.  The Lipid Organisation in Human Stratum Corneum and Model Systems , 2010 .

[17]  J. Bouwstra,et al.  Model membranes prepared with ceramide EOS, cholesterol and free fatty acids form a unique lamellar phase. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[18]  Massimo G. Noro,et al.  Water permeation through stratum corneum lipid bilayers from atomistic simulations , 2009, 0907.1664.

[19]  Massimo G Noro,et al.  Simulation studies of stratum corneum lipid mixtures. , 2009, Biophysical journal.

[20]  W. Briels,et al.  Simulations of skin barrier function: free energies of hydrophobic and hydrophilic transmembrane pores in ceramide bilayers. , 2008, Biophysical journal.

[21]  W. Briels,et al.  Modulating the skin barrier function by DMSO : molecular dynamics simulations of hydrophilic and hydrophobic transmembrane pores , 2008 .

[22]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[23]  Jamshed Anwar,et al.  The permeability enhancing mechanism of DMSO in ceramide bilayers simulated by molecular dynamics. , 2007, Biophysical journal.

[24]  M. Jensen,et al.  Reparameterization of all-atom dipalmitoylphosphatidylcholine lipid parameters enables simulation of fluid bilayers at zero tension. , 2007, Biophysical journal.

[25]  P. Garidel Structural organisation and phase behaviour of a stratum corneum lipid analogue: ceramide 3A. , 2006, Physical chemistry chemical physics : PCCP.

[26]  Sagar A. Pandit,et al.  Molecular-dynamics simulation of a ceramide bilayer. , 2006, The Journal of chemical physics.

[27]  L. Addadi,et al.  Structure of cholesterol/ceramide monolayer mixtures: implications to the molecular organization of lipid rafts. , 2005, Biophysical journal.

[28]  B. Dobner,et al.  Temperature-dependent behavior of a symmetric long-chain bolaamphiphile with phosphocholine headgroups in water: from hydrogel to nanoparticles. , 2004, Journal of the American Chemical Society.

[29]  Rhoderick E. Brown,et al.  The 4,5-double bond of ceramide regulates its dipole potential, elastic properties, and packing behavior. , 2004, Biophysical journal.

[30]  M. Shiga,et al.  Rapid estimation of elastic constants by molecular dynamics simulation under constant stress , 2004 .

[31]  Eric Jakobsson,et al.  Structure of sphingomyelin bilayers: a simulation study. , 2003, Biophysical journal.

[32]  R. Neubert,et al.  Polymorphism of ceramide 3. Part 2: a vibrational spectroscopic and X-ray powder diffraction investigation of N-octadecanoyl phytosphingosine and the analogous specifically deuterated d(35) derivative. , 2003, Chemistry and physics of lipids.

[33]  F. Fraternali,et al.  Hydrogen-bonding propensities of sphingomyelin in solution and in a bilayer assembly: a molecular dynamics study. , 2003, Biophysical journal.

[34]  R. Neubert,et al.  Polymorphism of ceramide 3. Part 1: an investigation focused on the head group of N-octadecanoylphytosphingosine. , 2003, Chemistry and physics of lipids.

[35]  D. Peter Tieleman,et al.  A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field , 2003, European Biophysics Journal.

[36]  P. Garidel Calorimetric and spectroscopic investigations of phytosphingosine ceramide membrane organisation , 2002 .

[37]  J. Bouwstra,et al.  Phase behavior of stratum corneum lipid mixtures based on human ceramides: the role of natural and synthetic ceramide 1. , 2002, The Journal of investigative dermatology.

[38]  J. Bouwstra,et al.  Aberrant lipid organization in stratum corneum of patients with atopic dermatitis and lamellar ichthyosis. , 2001, The Journal of investigative dermatology.

[39]  J. Nagle,et al.  Structure of lipid bilayers. , 2000, Biochimica et biophysica acta.

[40]  R. Mendelsohn,et al.  Fourier transform infrared spectroscopy and differential scanning calorimetry studies of fatty acid homogeneous ceramide 2. , 2000, Biochimica et biophysica acta.

[41]  Alexander D. MacKerell,et al.  An Improved Empirical Potential Energy Function for Molecular Simulations of Phospholipids , 2000 .

[42]  O. G. Mouritsen,et al.  Dimyristoylphosphatidylcholine/C16:0-ceramide binary liposomes studied by differential scanning calorimetry and wide- and small-angle x-ray scattering. , 2000, Biophysical journal.

[43]  J. Ring,et al.  Two ceramide subfractions detectable in Cer(AS) position by HPTLC in skin surface lipids of non-lesional skin of atopic eczema. , 1999, The Journal of investigative dermatology.

[44]  M. E. Stewart,et al.  A new 6-hydroxy-4-sphingenine-containing ceramide in human skin. , 1999, Journal of lipid research.

[45]  A. Blume,et al.  Interaction of alkaline earth cations with the negatively charged phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol : A differential scanning and isothermal titration calorimetric study , 1999 .

[46]  William L. Jorgensen,et al.  Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: Seeking temperatures of maximum density , 1998, J. Comput. Chem..

[47]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[48]  R. Mendelsohn,et al.  FTIR Spectroscopy Studies of the Conformational Order and Phase Behavior of Ceramides , 1997 .

[49]  O. Berger,et al.  Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. , 1997, Biophysical journal.

[50]  R. Mendelsohn,et al.  Lipid domains and orthorhombic phases in model stratum corneum: evidence from Fourier transform infrared spectroscopy studies. , 1997, Biochemical and biophysical research communications.

[51]  T. Redelmeier,et al.  Skin Barrier: Principles of Percutaneous Absorption , 1996 .

[52]  G. Shipley,et al.  Physical properties of ceramides: effect of fatty acid hydroxylation. , 1995, Journal of lipid research.

[53]  R. Duclos,et al.  Structural and thermotropic properties of synthetic C16:0 (palmitoyl) ceramide: effect of hydration. , 1995, Journal of lipid research.

[54]  M. E. Stewart,et al.  6-Hydroxy-4-sphingenine in human epidermal ceramides. , 1994, Journal of lipid research.

[55]  R. Duclos,et al.  Structure and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine bilayer membranes. , 1994, Biophysical journal.

[56]  R. Potts,et al.  Polymorphism in stratum corneum lipids. , 1994, Biochimica et biophysica acta.

[57]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[58]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[59]  I. Pascher,et al.  Molecular arrangements of sphingolipids. The monolayer behaviour of ceramides. , 1977, Chemistry and Physics of Lipids.

[60]  S. Wereley,et al.  soft matter , 2019, Science.

[61]  Alexander P. Lyubartsev,et al.  Recent development in computer simulations of lipid bilayers , 2011 .

[62]  R. Neubert,et al.  Polymorphism of ceramide 6: a vibrational spectroscopic and X-ray powder diffraction investigation of the diastereomers of N-(alpha-hydroxyoctadecanoyl)-phytosphingosine. , 2005, Chemistry and physics of lipids.

[63]  P. Garidel,et al.  Phytosphingosine and Sphingosine Ceramide Headgroup Hydrogen Bonding: Structural Insights through Thermotropic Hydrogen/Deuterium Exchange , 2001 .

[64]  P. Wertz,et al.  Lipids and barrier function of the skin. , 2000, Acta dermato-venereologica. Supplementum.

[65]  Mark R. Wilson,et al.  Determination of order parameters in realistic atom-based models of liquid crystal systems , 1996 .

[66]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[67]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid alkanes , 1978 .

[68]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .