Wavelet sampling techniques
暂无分享,去创建一个
[1] Gilbert G. Walter,et al. A sampling theorem for wavelet subspaces , 1992, IEEE Trans. Inf. Theory.
[2] W. Sweldens,et al. Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions , 1994 .
[3] C. Chui. Wavelets: A Tutorial in Theory and Applications , 1992 .
[4] Stéphane Mallat,et al. Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..
[5] A. Aldroubi,et al. Sampling procedures in function spaces and asymptotic equivalence with shannon's sampling theory , 1994 .
[6] Mark J. Shensa,et al. The discrete wavelet transform: wedding the a trous and Mallat algorithms , 1992, IEEE Trans. Signal Process..
[7] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[8] G. Strang,et al. Fourier Analysis of the Finite Element Method in Ritz-Galerkin Theory , 1969 .
[9] A. Cohen. Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .
[10] Amara Lynn Graps,et al. An introduction to wavelets , 1995 .
[11] Naoki Saito,et al. Multiresolution representations using the auto-correlation functions of compactly supported wavelets , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[12] Naoki Saito,et al. Multiresolution representations using the autocorrelation functions of compactly supported wavelets , 1993, IEEE Trans. Signal Process..
[13] S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .
[14] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[15] David L. Donoho,et al. Interpolating Wavelet Transforms , 1992 .
[16] Gilles Deslauriers,et al. Symmetric iterative interpolation processes , 1989 .
[17] Gilbert Strang,et al. Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..
[18] I. J. Schoenberg,et al. Cardinal interpolation and spline functions , 1969 .
[19] I. Daubechies,et al. Multiresolution analysis, wavelets and fast algorithms on an interval , 1993 .
[20] A. Aldroubi,et al. Families of wavelet transforms in connection with Shannon's sampling theory and the Gabor transform , 1993 .
[21] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[22] I. G. BONNER CLAPPISON. Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.
[23] C. Chui,et al. Wavelets on a Bounded Interval , 1992 .
[24] D. Donoho. Smooth Wavelet Decompositions with Blocky Coefficient Kernels , 1993 .
[25] A. Janssen. The Zak transform : a signal transform for sampled time-continuous signals. , 1988 .
[26] Wim Sweldens,et al. An Overview of Wavelet Based Multiresolution Analyses , 1994, SIAM Rev..
[27] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[28] Augustus J. E. M. Janssen,et al. The Zak transform and sampling theorems for wavelet subspaces , 1993, IEEE Trans. Signal Process..
[29] A. Aldroubi,et al. Families of multiresolution and wavelet spaces with optimal properties , 1993 .
[30] Y. Meyer. Ondelettes sur l'intervalle. , 1991 .
[31] L. Schumaker,et al. Recent advances in wavelet analysis , 1995 .
[32] I. Daubechies. Orthonormal bases of compactly supported wavelets II: variations on a theme , 1993 .
[33] C. Micchelli,et al. Stationary Subdivision , 1991 .