Lysis of staphylococcal mastitis pathogens by bacteriophage phi11 endolysin.

The Staphylococcus aureus bacteriophage phi11 endolysin has two peptidoglycan hydrolase domains (endopeptidase and amidase) and an SH3b cell wall-binding domain. In turbidity reduction assays, the purified protein can lyse untreated staphylococcal mastitis pathogens, Staphylococcus aureus and coagulase-negative staphylococci (Staphylococcus chronogenes, Staphylococcus epidermidis, Staphylococcus hyicus, Staphylococcus simulans, Staphylococcus warneri and Staphylococcus xylosus), making it a strong candidate protein antimicrobial. This lytic activity is maintained at the pH (6.7), and the "free" calcium concentration (3 mM) of milk. Truncated endolysin-derived proteins containing only the endopeptidase domain also lyse staphylococci in the absence of the SH3b-binding domain.

[1]  V. Fischetti Novel Method to Control Pathogenic Bacteria on Human Mucous Membranes , 2003, Annals of the New York Academy of Sciences.

[2]  S. Moineau,et al.  The Cell Lysis Activity of the Streptococcus agalactiae Bacteriophage B30 Endolysin Relies on the Cysteine, Histidine-Dependent Amidohydrolase/Peptidase Domain , 2006, Applied and Environmental Microbiology.

[3]  Ernesto García,et al.  Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. , 2004, FEMS microbiology reviews.

[4]  M. Paape,et al.  Genetically enhanced cows resist intramammary Staphylococcus aureus infection , 2005, Nature Biotechnology.

[5]  S. Schwarz,et al.  Antimicrobial resistance in staphylococci from animals with particular reference to bovine Staphylococcus aureus, porcine Staphylococcus hyicus, and canine Staphylococcus intermedius. , 2001, Veterinary research.

[6]  O. Schneewind,et al.  Targeting of muralytic enzymes to the cell division site of Gram‐positive bacteria: repeat domains direct autolysin to the equatorial surface ring of Staphylococcus aureus , 1998, The EMBO journal.

[7]  O. Schneewind,et al.  Multiple enzymatic activities of the murein hydrolase from staphylococcal phage phi11. Identification of a D-alanyl-glycine endopeptidase activity. , 1999, The Journal of biological chemistry.

[8]  R. Jayaswal,et al.  Sequence analysis of a Staphylococcus aureus gene encoding a peptidoglycan hydrolase activity. , 1991, Gene.

[9]  Vincent A. Fischetti,et al.  Removal of Group B Streptococci Colonizing the Vagina and Oropharynx of Mice with a Bacteriophage Lytic Enzyme , 2005, Antimicrobial Agents and Chemotherapy.

[10]  Ames,et al.  A bacteriolytic agent that detects and kills Bacillus anthracis , 2022 .

[11]  R. Jayaswal,et al.  Cloning and expression of a Staphylococcus aureus gene encoding a peptidoglycan hydrolase activity , 1990, Journal of bacteriology.

[12]  M. Loessner,et al.  Bacteriophage endolysins--current state of research and applications. , 2005, Current opinion in microbiology.

[13]  H. Deluyker,et al.  Factors affecting cure and somatic cell count after pirlimycin treatment of subclinical mastitis in lactating cows. , 2005, Journal of dairy science.

[14]  S. Moineau,et al.  Peptidoglycan Hydrolase Fusions Maintain Their Parental Specificities , 2006, Applied and Environmental Microbiology.

[15]  W. Zygmunt,et al.  LYSOSTAPHIN: ENZYMATIC MODE OF ACTION. , 1965, Biochemical and biophysical research communications.

[16]  P. Rajala-Schultz,et al.  Antimicrobial susceptibility of mastitis pathogens from first lactation and older cows. , 2004, Veterinary microbiology.

[17]  H. Unno,et al.  Functional analysis of antibacterial activity of Bacillus amyloliquefaciens phage endolysin against Gram‐negative bacteria , 2001, FEBS letters.

[18]  C. Walsh Opinion — anti-infectives: Where will new antibiotics come from? , 2003, Nature Reviews Microbiology.

[19]  Alex Bateman,et al.  The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. , 2003, Trends in biochemical sciences.

[20]  E. Díaz,et al.  Chimeric phage-bacterial enzymes: a clue to the modular evolution of genes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[21]  S. Waage,et al.  Bacteria associated with clinical mastitis in dairy heifers. , 1999, Journal of dairy science.

[22]  F. Aarestrup,et al.  Antimicrobial susceptibility of Staphylococcus aureus isolated from bovine mastitis in Europe and the United States. , 2000, Journal of dairy science.

[23]  D. Ferber WHO Advises Kicking the Livestock Antibiotic Habit , 2003, Science.

[24]  D. Wilson,et al.  Bovine mastitis pathogens in New York and Pennsylvania: prevalence and effects on somatic cell count and milk production. , 1997, Journal of dairy science.

[25]  Shogo Nakamura,et al.  The two-component cell lysis genes holWMY and lysWMY of the Staphylococcus warneri M phage varphiWMY: cloning, sequencing, expression, and mutational analysis in Escherichia coli. , 2005, Gene.

[26]  M. Neville,et al.  Calcium partitioning in human and bovine milk. , 1994, Journal of dairy science.

[27]  D. Ferber Antibiotic resistance. WHO advises kicking the livestock antibiotic habit. , 2003, Science.

[28]  L. Sordillo,et al.  Mammary Gland Immunity and Mastitis Susceptibility , 2002, Journal of Mammary Gland Biology and Neoplasia.

[29]  Jing Liu,et al.  The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  V. Fischetti,et al.  Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Ernesto García,et al.  Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. , 2003, The Journal of antimicrobial chemotherapy.

[32]  J. Sánchez-Puelles,et al.  Modular organization of the lytic enzymes of Streptococcus pneumoniae and its bacteriophages. , 1990, Gene.

[33]  Vincent A. Fischetti,et al.  Rapid Killing of Streptococcus pneumoniae with a Bacteriophage Cell Wall Hydrolase , 2001, Science.

[34]  Michael Y. Galperin,et al.  Amidase domains from bacterial and phage autolysins define a family of gamma-D,L-glutamate-specific amidohydrolases. , 2003, Trends in biochemical sciences.

[35]  F. Götz,et al.  Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus , 1997, Molecular microbiology.

[36]  D. Kerr,et al.  Mammary expression of new genes to combat mastitis , 2003, Journal of animal science.

[37]  R. Erskine,et al.  Trends in antibacterial susceptibility of mastitis pathogens during a seven-year period. , 2002, Journal of dairy science.

[38]  K. Plaut,et al.  Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice , 2001, Nature Biotechnology.

[39]  J. Engler,et al.  The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. , 2004, Microbiology.

[40]  V. Fischetti,et al.  Bacteriophage lytic enzymes: novel anti-infectives. , 2005, Trends in microbiology.

[41]  S. Foster,et al.  Characterization of AcmB, an N-acetylglucosaminidase autolysin from Lactococcus lactis. , 2003, Microbiology.

[42]  R. P. Dinsmore,et al.  Environmental gram-positive mastitis treatment: in vitro sensitivity and bacteriologic cure. , 2001, Journal of dairy science.

[43]  G. Fitzgerald,et al.  The Recombinant Phage Lysin LysK Has a Broad Spectrum of Lytic Activity against Clinically Relevant Staphylococci, Including Methicillin-Resistant Staphylococcus aureus , 2005, Journal of bacteriology.

[44]  D. Kerr,et al.  Engineering Disease Resistant Cattle , 2005, Transgenic Research.