A statistical geometry analysis of simulated water-DMSO and water-MeCN binary mixtures for biomolecular studies

Water-Dimethylsulfoxide (DMSO) and water-Acetonitrile (MeCN) binary mixtures at various molar ratios ranging from 0 to 1 are studied using Molecular Dynamics (MD) simulations. Hydration properties of water in different regions of MeCN/DMSO are investigated by using the statistical geometry approach. The obtained results reveal that in water-DMSO simulations both water and solvent molecules prefer to be in mixed cluster forms, depending upon the concentration of DMSO. While in case of water-MeCN mixtures, self-association of water and acetonitrile molecules, take place, showing microheterogeneity associated with the water- MeCN binary mixtures. The results highlight the utility of statistical geometric analysis of MD simulation data of binary liquid mixtures for rapid screening of polar organic solvents in non-aqueous enzymology.