Some useful theorems for asymptotic formulas and their applications to skew plane partitions and cylindric partitions

Inspired by the works of Dewar, Murty and Kotěsovec, we establish some useful theorems for asymptotic formulas. As an application, we obtain asymptotic formulas for the numbers of skew plane partitions and cylindric partitions. We prove that the order of the asymptotic formula for the skew plane partitions of fixed width depends only on the width of the region, not on the profile (the skew zone) itself, while this is not true for cylindric partitions.

[1]  Bruce E. Sagan Combinatorial Proofs of Hook Generating Functions for Skew Plane Partitions , 1993, Theor. Comput. Sci..

[2]  A. Erdélyi Asymptotic Expansions of Fourier Integrals Involving Logarithmic Singularities , 1956 .

[3]  Richard P. Stanley,et al.  The Conjugate Trace and Trace of a Plane Partition , 1973, J. Comb. Theory, Ser. A.

[4]  A. E. Ingham A Tauberian Theorem for Partitions , 1941 .

[5]  Greta Panova,et al.  Tableaux and plane partitions of truncated shapes , 2010, Adv. Appl. Math..

[6]  I. Gessel,et al.  Cylindric Partitions , 1995 .

[7]  Peter Tingley Three combinatorial models for affine sl(n) crystals, with applications to cylindric plane partitions , 2007 .

[8]  George E. Andrews,et al.  Plane partitions VI: Stembridge's TSPP theorem , 2005, Adv. Appl. Math..

[9]  R. Stanley Ordered Structures And Partitions , 1972 .

[10]  Bruce E. Sagan,et al.  Enumeration of Partitions with Hooklengths , 1982, Eur. J. Comb..

[11]  Andrei Okounkov,et al.  Quantum Calabi-Yau and Classical Crystals , 2003 .

[12]  George E. Andrews,et al.  Plane Partitions V: The TSSCPP Conjecture , 1994, J. Comb. Theory A.

[13]  G. Hardy,et al.  Asymptotic Formulaæ in Combinatory Analysis , 1918 .

[14]  Peter Tingley,et al.  Erratum: Three combinatorial models for sl^n crystals, with applications to cylindric plane partitions , 2010 .

[15]  M. Ram Murty,et al.  AN ASYMPTOTIC FORMULA FOR THE COEFFICIENTS OF j(z) , 2013 .

[16]  George E. Andrews,et al.  Plane partitions (III): The weak Macdonald conjecture , 1979 .

[17]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[18]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[19]  G. Andrews,et al.  MacMahon's conjecture on symmetric plane partitions. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. Stanley Theory and applications of plane partitions: Part 1 , 1971 .

[21]  Vaclav Kotesovec,et al.  A method of finding the asymptotics of q-series based on the convolution of generating functions , 2015, 1509.08708.

[22]  Christian Krattenthaler,et al.  Generating functions for plane partitions of a given shape , 1990 .

[23]  Alexei Borodin,et al.  Periodic Schur process and cylindric partitions , 2006 .

[24]  J. Shaw Combinatory Analysis , 1917, Nature.

[25]  Robin Langer,et al.  Enumeration of Cylindric Plane Partitions - Part II , 2012, 1209.1807.