Assembly system design using interval-based customer demand

Abstract Uncertainty is a characteristic element in the early planning phase of assembly systems. Today, planning methods normally apply precise data and do not take uncertainty into account. In this context, customer demand is one of the most important planning parameters for the design of assembly systems, providing specifications for the quantity of products to be assembled. This parameter is essential for dimensioning assembly systems. However, in the early planning phase it is often based on forecasts and therefore subject to uncertainty. This paper proposes a new method for designing manual assembly systems. For that purpose, interval arithmetic is used to describe customer demand with intervals, which allows the uncertainty of this planning parameter to be taken into account. Results of the proposed method are compared with those of a scenario-based method by means of a practical application example of a self-balanced scooter production. It is shown that interval arithmetic provides additional information indicating robustness of system design.

[1]  László Monostori,et al.  Capacity management of modular assembly systems , 2017 .

[2]  Gisela Lanza,et al.  Autonomous planning tool for changeable assembly systems , 2020 .

[3]  Maurizio Faccio,et al.  Assembly system design in the Industry 4.0 era: a general framework , 2017 .

[4]  Daniel Vanderpooten,et al.  Robust 1-median location problem on a tree , 2005 .

[5]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[6]  Cécile Murat,et al.  Recent advances in robust optimization: An overview , 2014, Eur. J. Oper. Res..

[7]  Dick den Hertog,et al.  A practical guide to robust optimization , 2015, 1501.02634.

[8]  Singiresu S. Rao,et al.  Analysis of uncertain structural systems using interval analysis , 1997 .

[9]  Hao Zhang,et al.  Nondeterministic Linear Static Finite Element Analysis: An Interval Approach , 2005 .

[10]  Brahim Rekiek,et al.  State of art of optimization methods for assembly line design , 2002, Annu. Rev. Control..

[11]  Amarnath Banerjee,et al.  Robust manufacturing system design using multi objective genetic algorithms, Petri nets and Bayesian uncertainty representation , 2013 .

[12]  Celso Gustavo Stall Sikora Benders' decomposition for the balancing of assembly lines with stochastic demand , 2020, Eur. J. Oper. Res..

[13]  Hans-Peter Wiendahl,et al.  Montage in der industriellen Produktion : ein Handbuch für die Praxis , 2012 .

[14]  Ernest Davis,et al.  Constraint Propagation with Interval Labels , 1987, Artif. Intell..

[15]  Andrew Lim,et al.  Reliable logistics networks design with facility disruptions , 2011 .

[16]  Kesten C. Green,et al.  Demand Forecasting: Evidence-Based Methods , 2005 .

[17]  Zhao Rongli,et al.  Digital twin-based designing of the configuration, motion, control, and optimization model of a flow-type smart manufacturing system , 2020 .

[18]  Sheldon Howard Jacobson,et al.  A Branch, Bound, and Remember Algorithm for the Simple Assembly Line Balancing Problem , 2012, INFORMS J. Comput..

[19]  Muhammad Amer,et al.  A review of scenario planning , 2013 .

[20]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[21]  We-Min Chow,et al.  Assembly Line Design: Methodology and Applications , 1990 .

[22]  S. Ferson,et al.  Different methods are needed to propagate ignorance and variability , 1996 .

[23]  Sheldon H. Jacobson,et al.  An application of the branch, bound, and remember algorithm to a new simple assembly line balancing dataset , 2014, Eur. J. Oper. Res..

[24]  Dimitris Kiritsis,et al.  A Petri net model for integrated process and job shop production planning , 2000, J. Intell. Manuf..

[25]  Jia-Hua Zhang,et al.  Hybrid genetic algorithm for a type-II robust mixed-model assembly line balancing problem with interval task times , 2019, Advances in Manufacturing.

[26]  Ramon E. Moore,et al.  Rigorous methods for global optimization , 1992 .

[27]  Nils Boysen,et al.  A classification of assembly line balancing problems , 2007, Eur. J. Oper. Res..

[28]  Aurélie Thiele,et al.  A note on issues of over-conservatism in robust optimization with cost uncertainty , 2010 .

[29]  Ilker Baybars,et al.  A survey of exact algorithms for the simple assembly line balancing , 1986 .

[30]  George Wright,et al.  The Delphi technique as a forecasting tool: issues and analysis , 1999 .

[31]  Anthony J. Hayter,et al.  Probability and statistics for engineers and scientists , 1996 .

[32]  Xuemei Liu,et al.  Optimisation of mixed-model assembly line balancing problem under uncertain demand , 2021 .

[33]  Branislav Mičieta,et al.  The use of computer simulation in the company that carries out the assembly of products , 2019 .

[34]  Alexandre Dolgui,et al.  A Review on Robust Assembly Line Balancing Approaches , 2019, IFAC-PapersOnLine.

[35]  Ibrahim Kucukkoc,et al.  Comprehensive review and evaluation of heuristics and meta-heuristics for two-sided assembly line balancing problem , 2017, Comput. Oper. Res..

[36]  Ali Akbar Shaikh,et al.  A partially integrated production-inventory model with interval valued inventory costs, variable demand and flexible reliability , 2017, Appl. Soft Comput..

[37]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[38]  Ian N. Durbach,et al.  Modeling uncertainty in multi-criteria decision analysis , 2012, Eur. J. Oper. Res..

[39]  Ibrahim Kucukkoc,et al.  A comparative study of exact methods for the simple assembly line balancing problem , 2019, Soft Comput..

[40]  Ralf Stetter,et al.  EXECUTABLE COST-SENSITIVE PRODUCT DEVELOPMENT OF A SELF-BALANCING TWO-WHEEL SCOOTER WITH GRAPH-BASED DESIGN LANGUAGES , 2018 .

[41]  Armin Scholl,et al.  A survey on problems and methods in generalized assembly line balancing , 2006, Eur. J. Oper. Res..

[42]  Yu Guo,et al.  Robust Facility Layout Design under Uncertain Product Demands , 2017 .

[43]  Huiyue Dong,et al.  Review of digital twin about concepts, technologies, and industrial applications , 2020 .

[44]  Claus-Gerold Grundig,et al.  Fabrikplanung: Planungssystematik – Methoden – Anwendungen , 2012 .

[45]  Kamran Shahanaghi,et al.  Determining production level under uncertainty using fuzzy simulation and bootstrap technique, a case study , 2017 .

[46]  Yahui Zhang,et al.  A modified Monte-Carlo Tree Search Algorithm for Two-sided Assembly Line Balancing Problem , 2019, IFAC-PapersOnLine.

[47]  Martin Manns,et al.  Engineering of assembly systems using graph-based design languages , 2017 .

[48]  Armin Jabbarzadeh,et al.  An enhanced robustness approach for managing supply and demand uncertainties , 2017 .

[49]  George Chryssolouris,et al.  Multi criteria assembly line design and configuration – An automotive case study , 2015 .

[50]  Alexandre Dolgui,et al.  Assembly line balancing under uncertainty: Robust optimization models and exact solution method , 2013, Comput. Ind. Eng..

[51]  J. Pereira,et al.  An exact approach for the robust assembly line balancing problem , 2017 .

[52]  Joaquín Bautista,et al.  A multiobjective model and evolutionary algorithms for robust time and space assembly line balancing under uncertain demand , 2016 .

[53]  Laine Mears,et al.  An effective integer program for a general assembly line balancing problem with parallel workers and additional assignment restrictions , 2019, Journal of Manufacturing Systems.

[54]  Jens Peter Wulfsberg,et al.  Knowledge-Based Planning and Evaluation of Production Systems , 2015, 2015 48th Hawaii International Conference on System Sciences.

[55]  Mark S. Daskin,et al.  α-reliable p-minimax regret: a new model for strategic facility location modeling , 1997 .

[56]  A. Dreyer,et al.  Interval Analysis of Linear Analog Circuits , 2006, 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006).

[57]  C. Joslyn Approximate representations of random intervals for hybrid uncertainty quantification in engineering modeling , 2004 .

[58]  E. Walter,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2001 .

[59]  J. Merlet,et al.  Five Precision Point Synthesis of Spatial RRR Manipulators Using Interval Analysis , 2004 .

[60]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[61]  Genaro J. Gutierrez,et al.  Algorithms for robust single and multiple period layout planning for manufacturing systems , 1992 .

[62]  George Chryssolouris,et al.  Multi-criteria Assembly Line Design under Demand Uncertainty☆ , 2014 .

[63]  Alexandre Dolgui,et al.  A taxonomy of line balancing problems and their solutionapproaches , 2013 .

[64]  Alexandre Dolgui,et al.  Robust balancing of straight assembly lines with interval task times , 2013, J. Oper. Res. Soc..