A theoretical study of electrocatalytic ammonia synthesis on single metal atom/MXene

[1]  J. Tkáč,et al.  Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications , 2018, Sensors and Actuators B: Chemical.

[2]  Youyong Li,et al.  First-Principles Insight into Electrocatalytic Reduction of CO2 to CH4 on a Copper Nanoparticle , 2018 .

[3]  Jingxiang Zhao,et al.  Computational screening of a single transition metal atom supported on the C2N monolayer for electrochemical ammonia synthesis. , 2018, Physical chemistry chemical physics : PCCP.

[4]  Yanjun Jiang,et al.  Silver nanoparticles modified two-dimensional transition metal carbides as nanocarriers to fabricate acetycholinesterase-based electrochemical biosensor , 2018 .

[5]  B. Qiao,et al.  Single-atom catalysis: Bridging the homo- and heterogeneous catalysis , 2018 .

[6]  Jianguo Wang,et al.  Highly Efficient Ammonia Synthesis Electrocatalyst: Single Ru Atom on Naturally Nanoporous Carbon Materials (Adv. Theory Simul. 5/2018) , 2018 .

[7]  D. Macfarlane,et al.  Rational Electrode–Electrolyte Design for Efficient Ammonia Electrosynthesis under Ambient Conditions , 2018 .

[8]  Jingxiang Zhao,et al.  Single transition metal atom embedded into a MoS2 nanosheet as a promising catalyst for electrochemical ammonia synthesis. , 2018, Physical chemistry chemical physics : PCCP.

[9]  Y. Kato Deformation Control and Mass Transfer in the Tunic of Halocynthia roretzi , 2018 .

[10]  Lidan Fan,et al.  Electromagnetic wave absorption properties in the centimetre-band of Ti3C2Tx MXenes with diverse etching time , 2018, Journal of Materials Science: Materials in Electronics.

[11]  Yun Zhang,et al.  Palladium Supported on Titanium Carbide: A Highly Efficient, Durable, and Recyclable Bifunctional Catalyst for the Transformation of 4-Chlorophenol and 4-Nitrophenol , 2018, Nanomaterials.

[12]  R. P. Pandey,et al.  Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets , 2018 .

[13]  Hao Wang,et al.  Metal-organic frameworks for highly efficient oxygen electrocatalysis , 2018 .

[14]  Younes Abghoui,et al.  Computational Screening of Rutile Oxides for Electrochemical Ammonia Formation , 2017 .

[15]  Jingxiang Zhao,et al.  Single Mo Atom Supported on Defective Boron Nitride Monolayer as an Efficient Electrocatalyst for Nitrogen Fixation: A Computational Study. , 2017, Journal of the American Chemical Society.

[16]  D. Cheng,et al.  Component-dependent electrocatalytic activity of PdCu bimetallic nanoparticles for hydrogen evolution reaction , 2017 .

[17]  Haihui Wang,et al.  Ammonia Electrosynthesis with High Selectivity under Ambient Conditions via a Li+ Incorporation Strategy. , 2017, Journal of the American Chemical Society.

[18]  Zihe Zhang,et al.  Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction , 2017 .

[19]  Chenghua Sun,et al.  Feasibility of N2 Binding and Reduction to Ammonia on Fe-Deposited MoS2 2D Sheets: A DFT Study. , 2017, Chemistry.

[20]  B. Jeyaprakash,et al.  Electronic Structure Calculations of Ammonia Adsorption on Graphene and Graphene Oxide with Epoxide and Hydroxyl Groups , 2017, Journal of Electronic Materials.

[21]  Younes Abghoui,et al.  Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group III–VII transition metal mononitrides , 2017 .

[22]  Michael Stoukides,et al.  Progress in the Electrochemical Synthesis of Ammonia , 2017 .

[23]  Claudio Ampelli,et al.  Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst. , 2017, Angewandte Chemie.

[24]  Jun Jiang,et al.  Graphitic carbon nitride supported single-atom catalysts for efficient oxygen evolution reaction. , 2016, Chemical communications.

[25]  Donghai Mei,et al.  Promotional effect of surface hydroxyls on electrochemical reduction of CO2 over SnOx/Sn electrode , 2016 .

[26]  S. Back,et al.  Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements , 2016, Chemical science.

[27]  Patrick L. Holland,et al.  Insight into the Iron-Molybdenum Cofactor of Nitrogenase from Synthetic Iron Complexes with Sulfur, Carbon, and Hydride Ligands. , 2016, Journal of the American Chemical Society.

[28]  Zhen Zhou,et al.  A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation , 2016 .

[29]  J. Peters,et al.  An Fe-N₂ Complex That Generates Hydrazine and Ammonia via Fe═NNH₂: Demonstrating a Hybrid Distal-to-Alternating Pathway for N₂ Reduction. , 2016, Journal of the American Chemical Society.

[30]  Tejs Vegge,et al.  Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V – A DFT guide for experiments , 2016 .

[31]  Joseph H. Montoya,et al.  The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations. , 2015, ChemSusChem.

[32]  Zhiwei Huang,et al.  Electronic metal-support interactions in single-atom catalysts. , 2014, Angewandte Chemie.

[33]  T. Bligaard,et al.  DFT based study of transition metal nano-clusters for electrochemical NH3 production. , 2013, Physical chemistry chemical physics : PCCP.

[34]  Yury Gogotsi,et al.  Intercalation and delamination of layered carbides and carbonitrides , 2013, Nature Communications.

[35]  L. Meng,et al.  Buckled silicene formation on Ir(111). , 2013, Nano letters.

[36]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[37]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[38]  Shanwen Tao,et al.  Solid-state electrochemical synthesis of ammonia: a review , 2011 .

[39]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[40]  Shigang Sun,et al.  Electrochemical preparation of iron cuboid nanoparticles and their catalytic properties for nitrite reduction , 2008 .

[41]  J. Nørskov,et al.  Electrolysis of water on (oxidized) metal surfaces , 2005 .

[42]  K. Burke,et al.  Perdew, Burke, and Ernzerhof Reply: , 1998 .

[43]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[44]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[45]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[46]  P. Blöchl Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[47]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[48]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[49]  Wei Zhang,et al.  Pinpointing single metal atom anchoring sites in carbon for oxygen reduction: Doping sites or defects? , 2018 .

[50]  Jianguo Wang,et al.  Oxygen vacancies on TiO2 promoted the activity and stability of supported Pd nanoparticles for the oxygen reduction reaction , 2017 .