A neural network approach for estimating large K distribution parameters
暂无分享,去创建一个
[1] P. Shankar,et al. Ultrasound speckle analysis based on the K distribution. , 1991, The Journal of the Acoustical Society of America.
[2] M. Nakagami. The m-Distribution—A General Formula of Intensity Distribution of Rapid Fading , 1960 .
[3] P. Fitzgerald,et al. Non-Rayleigh first-order statistics of ultrasonic backscatter from normal myocardium. , 1993, Ultrasound in medicine & biology.
[4] R. S. Raghavan,et al. A method for estimating parameters of K-distributed clutter , 1991 .
[5] Jacek M. Zurada,et al. Classification and estimation of ultrasound speckle noise with neural networks , 2000, Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering.
[6] Boualem Boashash,et al. A method for estimating the parameters of the K distribution , 1999, IEEE Trans. Signal Process..
[7] E. Jakeman,et al. Generalized K distribution: a statistical model for weak scattering , 1987 .
[8] Abdelhak M. Zoubir,et al. Estimating the parameters of K-distribution using higher-order and fractional moments , 1999 .
[9] Abdelhak M. Zoubir,et al. Estimation of the parameters of the K-distribution using higher order and fractional moments [radar clutter] , 1999 .
[10] Donald B. Percival,et al. Maximum likelihood estimation of K distribution parameters for SAR data , 1993, IEEE Trans. Geosci. Remote. Sens..
[11] P M Shankar,et al. Use of the K-distribution for classification of breast masses. , 2000, Ultrasound in medicine & biology.