A Family of Energy Stable, Skew-Symmetric Finite Difference Schemes on Collocated Grids

A simple scheme for incompressible, constant density flows is presented, which avoids odd-even decoupling for the Laplacian on collocated grids. Energy stability is implied by guaranteeing strict energy conservation. Momentum is conserved. Arbitrary order in space and time can easily be obtained. These conservation properties also hold on transformed grids.

[1]  Anil W. Date,et al.  Numerical Grid Generation , 2005 .

[2]  J. Blair Perot,et al.  Discrete Conservation Properties of Unstructured Mesh Schemes , 2011 .

[3]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[4]  A. B. Strong,et al.  A Fully Conservative Second-Order Finite Difference Scheme for Incompressible Flow on Nonuniform Grids , 2002 .

[5]  P. Wesseling Principles of Computational Fluid Dynamics , 2000 .

[6]  P. Thomas,et al.  Geometric Conservation Law and Its Application to Flow Computations on Moving Grids , 1979 .

[7]  Kai Schneider,et al.  Fourier spectral and wavelet solvers for the incompressible Navier-Stokes equations with volume-penalization: Convergence of a dipole-wall collision , 2007, J. Comput. Phys..

[8]  E. Tadmor Skew-selfadjoint form for systems of conservation laws , 1984 .

[9]  Jens Brouwer,et al.  Conservative time integrators of arbitrary order for skew-symmetric finite-difference discretizations of compressible flow , 2014 .

[10]  Benjamin Sanderse,et al.  Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations , 2013, J. Comput. Phys..

[11]  Marie Farge,et al.  Vorticity filaments in two-dimensional turbulence: creation, stability and effect , 1997, Journal of Fluid Mechanics.

[12]  A. Veldman,et al.  Symmetry-preserving discretization of turbulent flow , 2003 .

[13]  Joe F. Thompson,et al.  Numerical grid generation , 1985 .

[14]  F. Xavier Trias,et al.  Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids , 2014, J. Comput. Phys..

[15]  R. Sani,et al.  On pressure boundary conditions for the incompressible Navier‐Stokes equations , 1987 .

[16]  P. Moin,et al.  Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow , 1998 .

[17]  Thomas S. Lund,et al.  Kinetic energy conservation issues associated with the collocated mesh scheme for incompressible flow , 2006, J. Comput. Phys..

[18]  T. A. Porsching,et al.  An unconditionally stable convergent finite difference method for Navier-Stokes problems on curved domains , 1987 .

[19]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[20]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[21]  Erik Dick,et al.  A multigrid method for steady incompressible navier‐stokes equations based on flux difference splitting , 1992 .

[22]  D. Rempfer On Boundary Conditions for Incompressible Navier-Stokes Problems , 2006 .

[23]  J. Sesterhenn,et al.  Calculation of Shocks with Skew Symmetric Schemes , 2011 .

[24]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[25]  Olivier Pironneau,et al.  Pressure boundary condition for the time‐dependent incompressible Navier–Stokes equations , 2006 .

[26]  Julius Reiss,et al.  A conservative, skew-symmetric Finite Difference Scheme for the compressible Navier--Stokes Equations , 2013, 1308.6672.

[27]  Miguel R. Visbal,et al.  On the use of higher-order finite-difference schemes on curvilinear and deforming meshes , 2002 .

[28]  D. Schmidt,et al.  Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics , 2002 .

[29]  A. Veldman,et al.  Playing with nonuniform grids , 1992 .