The zeros of random polynomials cluster uniformly near the unit circle
暂无分享,去创建一个
[1] K. Farahmand. On the Average Number of Real Roots of a Random Algebraic Equation , 1986 .
[2] Yuri Bilu,et al. Limit distribution of small points on algebraic tori , 1997 .
[3] Karol Zyczkowski,et al. Secular determinants of random unitary matrices , 1996 .
[4] N. Snaith,et al. Random Matrix Theory and ζ(1/2+it) , 2000 .
[5] I. Ibragimov,et al. On roots of random polynomials , 1997 .
[6] O. Bohigas,et al. Quantum chaotic dynamics and random polynomials , 1996 .
[7] Alan Edelman,et al. How many zeros of a random polynomial are real , 1995 .
[8] E. Kostlan. On the Distribution of Roots of Random Polynomials , 1993 .
[9] S. Lang. Complex Analysis , 1977 .
[10] K. J. Hochberg,et al. Asymptotic behavior of roots of random polynomial equations , 2002 .
[11] L. Shepp,et al. The Complex Zeros of Random Polynomials , 1995 .
[12] Francesco Mezzadri. Random matrix theory and the zeros of ζ′(s) , 2003 .
[13] Paul Erdös,et al. On the Distribution of Roots of Polynomials , 1950 .
[14] L. Shepp. Probability Essentials , 2002 .
[15] M. Kac. A correction to “On the average number of real roots of a random algebraic equation” , 1943 .
[16] Paul Malliavin,et al. Integration and Probability , 1995, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.