Complete mitochondrial DNA sequence of ayu Plecoglossus altivelis

SUMMARY: We determined the complete nucleotide sequence of the mitochondrial genome for ayu, Plecoglossus altivelis. Two large DNA fragments covering the entire genome were amplified using a long polymerase chain reaction (PCR) technique, and the products subsequently used as templates for PCR with 57 fish-versatile and five species-specific primers that amplify contiguous, overlapping segments of the entire genome. Direct sequencing of the PCR products demonstrated that the genome (16 537 bp) contained the same 37 mitochondrial genes (two ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes) as those found in other vertebrates, with the gene order identical to that in typical vertebrates. A major non-coding region between the tRNAPro and tRNAPhe genes (857 bp) was considered to be the control region (D-loop), as it has several conservative blocks that are characteristic to this region.

[1]  R. Gutell,et al.  A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993. , 1992, Nucleic acids research.

[2]  J. Inoue,et al.  Complete mitochondrial DNA sequence of the Japanese sardine Sardinops melanostictus , 2000 .

[3]  D. Rosen Phylogeny and zoogeography of salmoniform fishes and relationships of Lepidogalaxias salamandroides. Bulletin of the AMNH ; v. 153, article 2 , 1974 .

[4]  A. Meyer,et al.  The complete DNA sequence of the mitochondrial genome of a "living fossil," the coelacanth (Latimeria chalumnae). , 1997, Genetics.

[5]  Stanley H. Weitzman,et al.  Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bulletin of the AMNH ; v. 131, article 4 , 1967 .

[6]  S. Johansen,et al.  The complete mitochondrial DNA sequence of Atlantic cod (Gadus morhua): relevance to taxonomic studies among codfishes. , 1996, Molecular marine biology and biotechnology.

[7]  M. Murakami,et al.  The Complete Sequence of Mitochondrial Genome from a Gynogenetic Triploid “Ginbuna” (Carassius auratus langsdorfi) , 1998, Zoological science.

[8]  M. Nishida,et al.  Sequence Divergence in the MtDNA Control Region of Amphidromous and Landlocked Forms of Ayu , 1997 .

[9]  H. Toyohara,et al.  Complete nucleotide sequence of Japanese flounder (Paralichthys olivaceus) mitochondrial genome: structural properties and cue for resolving teleostean relationships. , 2000, The Journal of heredity.

[10]  D. P. Begle Relationships of the Osmeroid Fishes and the Use of Reductive Characters in Phylogenetic Analysis , 1991 .

[11]  A. Meyer,et al.  The complete nucleotide sequence of the mitochondrial genome of the lungfish (Protopterus dolloi) supports its phylogenetic position as a close relative of land vertebrates. , 1996, Genetics.

[12]  J. Inoue,et al.  Complete mitochondrial DNA sequence of the Japanese eel Anguilla japonica , 2001 .

[13]  N. Taniguchi,et al.  Microsatellite DNA Polymorphism to Reveal Genetic Divergence in Ayu, Plecoglossus altivelis , 1999 .

[14]  L. Pastene Examination of reproductive success of transplanted stocks in an amphidromous fish, Plecoglossus altivelis using mitochondrial DNA and isozyme markers , 1991 .

[15]  Robert S. R. Williams,et al.  New Paleocene genus and species of smelt (Teleostei: Osmeridae) from freshwater deposits of the Paskapoo Formation, Alberta, Canada, and comments on osmerid phylogeny , 1991 .

[16]  C. Hurst,et al.  The complete mitochondrial DNA sequence of the Atlantic salmon, Salmo salar. , 1999, Gene.

[17]  M. Nishida Substantial genetic differentiation in Ayu Plecoglossus altivelis of the Japan and Ryukyu Islands. , 1985 .

[18]  P. C. Huang,et al.  The complete nucleotide sequence of the Crossostoma lacustre mitochondrial genome: conservation and variations among vertebrates. , 1992, Nucleic acids research.

[19]  M. Miya,et al.  Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion. , 2000, Molecular phylogenetics and evolution.

[20]  J. Hixson,et al.  Both the conserved stem-loop and divergent 5'-flanking sequences are required for initiation at the human mitochondrial origin of light-strand DNA replication. , 1986, The Journal of biological chemistry.

[21]  B. May,et al.  AFLP analysis of genetic diversity in three populations of ayu Plecoglossus altivelis , 1999 .

[22]  N. Taniguchi,et al.  Genetic divergence among natural populations of Ayu from Japan and Korea. , 1988 .

[23]  Murray N. Schnare,et al.  A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993 , 1993, Nucleic Acids Res..

[24]  M. Miya,et al.  Organization of the Mitochondrial Genome of a Deep-Sea Fish, Gonostoma gracile (Teleostei: Stomiiformes): First Example of Transfer RNA Gene Rearrangements in Bony Fishes , 1999, Marine Biotechnology.

[25]  A. Meyer,et al.  The complete mitochondrial DNA sequence of the bichir (Polypterus ornatipinnis), a basal ray-finned fish: ancient establishment of the consensus vertebrate gene order. , 1996, Genetics.

[26]  G. D. Johnson,et al.  Chapter 12 – Relationships of Lower Euteleostean Fishes , 1996 .

[27]  M. Walberg,et al.  Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. , 1981, Nucleic acids research.

[28]  F. Sanger,et al.  Sequence and organization of the human mitochondrial genome , 1981, Nature.

[29]  M. Nishida,et al.  Genetic Variation and Geographic Population Structure of Amphidromous Ayu Plecoglossus altivelis as Examined by Mitochondrial DNA Sequencing , 1999 .