Training the quantum approximate optimization algorithm without access to a quantum processing unit

In this paper, we eliminate the classical outer learning loop of the Quantum Approximate Optimization Algorithm (QAOA) and present a strategy to find good parameters for QAOA based on topological arguments of the problem graph and tensor network techniques. Starting from the observation of the concentration of control parameters of QAOA, we find a way to classically infer parameters which scales polynomially in the number of qubits and exponentially with the depth of the circuit. Using this strategy, the quantum processing unit (QPU) is only needed to infer the final state of QAOA. This method paves the way for a variation-free version of QAOA and makes QAOA more practical for applications on NISQ devices. Moreover, we show the applicability of our method beyond the scope of QAOA, in improving schedules for quantum annealing.

[1]  Daniel A. Lidar,et al.  Probing for quantum speedup in spin-glass problems with planted solutions , 2015, 1502.01663.

[2]  M. B. Hastings,et al.  Classical and quantum bounded depth approximation algorithms , 2019, Quantum Inf. Comput..

[3]  Aniruddha Bapat,et al.  Bang-bang control as a design principle for classical and quantum optimization algorithms , 2018, Quantum Inf. Comput..

[4]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[5]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[6]  Masoud Mohseni,et al.  Learning to learn with quantum neural networks via classical neural networks , 2019, ArXiv.

[7]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[8]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[9]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[10]  Johnnie Gray,et al.  opt\_einsum - A Python package for optimizing contraction order for einsum-like expressions , 2018, J. Open Source Softw..

[11]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[12]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[13]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[14]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[15]  Thomas G. Walker,et al.  Demonstration of a neutral atom controlled-NOT quantum gate. , 2009, Physical review letters.

[16]  Helmut G. Katzgraber,et al.  A deceptive step towards quantum speedup detection , 2017, Quantum Science and Technology.

[17]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[18]  Tarun Grover,et al.  Making trotters sprint: A variational imaginary time ansatz for quantum many-body systems , 2019, Physical Review B.

[19]  Seth Lloyd,et al.  Continuous-variable quantum neural networks , 2018, Physical Review Research.

[20]  M. Leib,et al.  Comparison of QAOA with Quantum and Simulated Annealing , 2019, 1901.01903.

[21]  F. Brandão,et al.  For Fixed Control Parameters the Quantum Approximate Optimization Algorithm's Objective Function Value Concentrates for Typical Instances , 2018, 1812.04170.

[22]  A N Cleland,et al.  Qubit Architecture with High Coherence and Fast Tunable Coupling. , 2014, Physical review letters.

[23]  Michael Broughton,et al.  A quantum algorithm to train neural networks using low-depth circuits , 2017, 1712.05304.

[24]  E. Rieffel,et al.  Near-optimal quantum circuit for Grover's unstructured search using a transverse field , 2017, 1702.02577.

[25]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[26]  Stuart Hadfield,et al.  Optimizing quantum heuristics with meta-learning , 2019, Quantum Machine Intelligence.

[27]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[28]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[29]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[30]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[31]  Hans De Raedt,et al.  Benchmarking the quantum approximate optimization algorithm , 2020, Quantum Inf. Process..

[32]  Hartmut Neven,et al.  Classification with Quantum Neural Networks on Near Term Processors , 2018, 1802.06002.

[33]  Leo Zhou,et al.  Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices , 2018, Physical Review X.

[34]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[35]  Alán Aspuru-Guzik,et al.  qTorch: The quantum tensor contraction handler , 2017, PloS one.

[36]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[37]  Stuart Hadfield,et al.  The Quantum Approximation Optimization Algorithm for MaxCut: A Fermionic View , 2017, 1706.02998.

[38]  Andrew D. King,et al.  Algorithm engineering for a quantum annealing platform , 2014, ArXiv.

[39]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm Applied to a Bounded Occurrence Constraint Problem , 2014, 1412.6062.

[40]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[41]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.

[42]  Rosario Fazio,et al.  Quantum Annealing: a journey through Digitalization, Control, and hybrid Quantum Variational schemes , 2019, 1906.08948.