How Do Read-Once Formulae Shrink?

Let f be a de Morgan read-once function of n variables. Let f e be the random restriction obtained by independently assigning to each variable of f , the value 0 with probability (1 -e)/2, the value 1 with the same probability, and leaving it unassigned with probability e. We show that f e depends, on the average, on only O (e α n + e n 1/α ) variables, where . This result is asymptotically the tightest possible. It improves a similar result obtained recently by Hastad, Razborov and Yao.

[1]  Uri Zwick,et al.  Shrinkage of de Morgan formulae under restriction , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[2]  Johan Håstad The shrinkage exponent is 2 , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[3]  Uri Zwick,et al.  Ampliication by Read-once Formulae , 1995 .

[4]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[5]  Aaron D. Wyner,et al.  Reliable Circuits Using Less Reliable Relays , 1993 .

[6]  Avi Wigderson,et al.  Monotone circuits for connectivity require super-logarithmic depth , 1990, STOC '88.

[7]  J. Håstad Computational limitations of small-depth circuits , 1987 .

[8]  Paul E. Dunne,et al.  The Complexity of Boolean Networks , 1988 .

[9]  A. Yao Separating the polynomial-time hierarchy by oracles , 1985 .

[10]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[11]  Ravi B. Boppana,et al.  Amplification of probabilistic boolean formulas , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[12]  Alexander A. Razborov,et al.  On the Shrinkage Exponent for Read-Once Formulae , 1995, Theor. Comput. Sci..

[13]  Leslie G. Valiant,et al.  Short Monotone Formulae for the Majority Function , 1984, J. Algorithms.

[14]  Noam Nisan,et al.  The Effect of Random Restrictions on Formula Size , 1993, Random Struct. Algorithms.