How Do Read-Once Formulae Shrink?
暂无分享,去创建一个
[1] Uri Zwick,et al. Shrinkage of de Morgan formulae under restriction , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[2] Johan Håstad. The shrinkage exponent is 2 , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[3] Uri Zwick,et al. Ampliication by Read-once Formulae , 1995 .
[4] Ingo Wegener,et al. The complexity of Boolean functions , 1987 .
[5] Aaron D. Wyner,et al. Reliable Circuits Using Less Reliable Relays , 1993 .
[6] Avi Wigderson,et al. Monotone circuits for connectivity require super-logarithmic depth , 1990, STOC '88.
[7] J. Håstad. Computational limitations of small-depth circuits , 1987 .
[8] Paul E. Dunne,et al. The Complexity of Boolean Networks , 1988 .
[9] A. Yao. Separating the polynomial-time hierarchy by oracles , 1985 .
[10] J. Van Leeuwen,et al. Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .
[11] Ravi B. Boppana,et al. Amplification of probabilistic boolean formulas , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).
[12] Alexander A. Razborov,et al. On the Shrinkage Exponent for Read-Once Formulae , 1995, Theor. Comput. Sci..
[13] Leslie G. Valiant,et al. Short Monotone Formulae for the Majority Function , 1984, J. Algorithms.
[14] Noam Nisan,et al. The Effect of Random Restrictions on Formula Size , 1993, Random Struct. Algorithms.