Structure Recovery via Hybrid Variational Surface Approximation

Aiming at robust surface structure recovery, we extend the powerful optimization technique of variational shape approximation by allowing for several different primitives to represent the geometric proxy of a surface region. While the original paper only considered planes, we also include spheres, cylinders, and more complex rollingball blend patches. The motivation for this choice is the fact that most technical CAD objects consist of patches from these four categories. The robust segmentation and global optimization properties which have been observed for the variational shape approximation carry over to our hybrid extension. Hence, we can use our algorithm to segment a given mesh model into characteristic patches and provide a corresponding geometric proxy for each patch. The expected result that we recover surface structures more robustly and thus obtain better approximations with a smaller number of primitives, is validated and demonstrated on a number of examples.

[1]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[2]  H. Deutsch Principle Component Analysis , 2004 .

[3]  Ralph R. Martin,et al.  Reverse engineering of geometric models - an introduction , 1997, Comput. Aided Des..

[4]  Pedro V. Sander,et al.  Multi-Chart Geometry Images , 2003, Symposium on Geometry Processing.

[5]  Peter Schröder,et al.  Normal meshes , 2000, SIGGRAPH.

[6]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[7]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[8]  Leif Kobbelt,et al.  Automatic Generation of Structure Preserving Multiresolution Models , 2005, Comput. Graph. Forum.

[9]  Pierre Alliez,et al.  Variational shape approximation , 2004, ACM Trans. Graph..

[10]  Subhash Suri,et al.  Surface approximation and geometric partitions , 1994, SODA '94.

[11]  Leif Kobbelt,et al.  Simplification and Compression of 3D Meshes , 2002, Tutorials on Multiresolution in Geometric Modelling.

[12]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[13]  M. Garland,et al.  Multiresolution Modeling: Survey & Future Opportunities , 1999 .

[14]  Russell H. Taylor,et al.  Superfaces: polygonal mesh simplification with bounded error , 1996, IEEE Computer Graphics and Applications.

[15]  Jung Hong Chuang Level of Detail for 3D Graphics , 2002 .

[16]  Mathieu Desbrun,et al.  Variational shape approximation , 2004, SIGGRAPH 2004.

[17]  Michael Garland,et al.  Multiresolution Modeling: Survey and Future Opportunities , 1999, Eurographics.

[18]  Michael Garland,et al.  Hierarchical face clustering on polygonal surfaces , 2001, I3D '01.

[19]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[20]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[21]  Ralph R. Martin,et al.  Constrained fitting in reverse engineering , 2002, Comput. Aided Geom. Des..

[22]  Pierre Alliez,et al.  Isotropic Remeshing of Surfaces: A Local Parameterization Approach , 2003, IMR.

[23]  Leif Kobbelt,et al.  Resampling Feature and Blend Regions in Polygonal Meshes for Surface Anti‐Aliasing , 2001, Comput. Graph. Forum.

[24]  Alla Sheffer,et al.  Model simplification for meshing using face clustering , 2001, Comput. Aided Des..

[25]  Hans-Peter Seidel,et al.  A Shrink Wrapping Approach to Remeshing Polygonal Surfaces , 1999, Comput. Graph. Forum.

[26]  Helmut Pottmann,et al.  Rotational and helical surface approximation for reverse engineering , 1998, Computing.

[27]  John Hart,et al.  ACM Transactions on Graphics: Editorial , 2003, SIGGRAPH 2003.

[28]  Helmut Pottmann,et al.  Industrial geometry: recent advances and applications in CAD , 2005, Comput. Aided Des..

[29]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[30]  Vaughan R. Pratt,et al.  Direct least-squares fitting of algebraic surfaces , 1987, SIGGRAPH.

[31]  D. Zhang,et al.  Principle Component Analysis , 2004 .

[32]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[33]  Leif Kobbelt,et al.  Direct anisotropic quad-dominant remeshing , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..