Random Surfactant Assemblies and Microemulsions

[1]  Cates,et al.  Role of shear in the isotropic-to-lamellar transition. , 1989, Physical review letters.

[2]  M. Cates The Liouville Field Theory of Random Surfaces: When is the Bosonic String a Branched Polymer? , 1988 .

[3]  M. Cates Dynamics of living polymers and flexible surfactant micelles : scaling laws for dilution , 1988 .

[4]  M. Cates,et al.  Theory of microemulsions: comparison with experimental behavior , 1988 .

[5]  M. Cates,et al.  Correlations and structure factor of bicontinuous microemulsions , 1988 .

[6]  M. Cates,et al.  Random surface model for the L3-phase of dilute surfactant solutions (Erratum) , 1988 .

[7]  Stanislas Leibler,et al.  Phase behaviour of an ensemble of nonintersecting random fluid films , 1988 .

[8]  F. David,et al.  RIGID RANDOM SURFACES AT LARGE d , 1988 .

[9]  P. Bassereau,et al.  Shape transformations of the aggregates in dilute surfactant solutions : a small-angle neutron scattering study , 1988 .

[10]  Roux,et al.  Dynamics of phase separation between a lyotropic dilute lamellar phase and an isotropic phase. , 1988, Physical review letters.

[11]  M. Cates,et al.  Structure and phase equilibria of microemulsions , 1987 .

[12]  M. Teubner,et al.  Origin of the scattering peak in microemulsions , 1987 .

[13]  Berk Nf,et al.  Scattering properties of a model bicontinuous structure with a well defined length scale. , 1987 .

[14]  Smith,et al.  Steric interactions in a model multimembrane system: A synchrotron x-ray study. , 1986, Physical review letters.

[15]  Nelson,et al.  Statistical mechanics of tethered surfaces. , 1986, Physical review letters.

[16]  Roux,et al.  Origin of middle-phase microemulsions. , 1986, Physical review letters.

[17]  B. Widom,et al.  Lattice model of microemulsions , 1986 .

[18]  H. Kleinert Thermal softening of curvature elasticity in membranes , 1986 .

[19]  M. Cates The fractal dimension and connectivity of random surfaces , 1985 .

[20]  P. Schurtenberger,et al.  Micelle to vesicle transition in aqueous solutions of bile salt and lecithin , 1985 .

[21]  J. Fröhlich,et al.  Critical behaviour in a model of planar random surfaces , 1984 .

[22]  B. Lindman,et al.  Nuclear magnetic resonance self-diffusion and proton relaxation studies of nonionic surfactant solutions. Aggregate shape in isotropic solutions above the clouding temperature , 1984 .

[23]  B. Widom A model microemulsion , 1984 .

[24]  C. Miller,et al.  Lyotropic liquid crystalline phases and dispersions in dilute anionic surfactant-alcohol-brine systems. 1. Patterns of phase behavior , 1983 .

[25]  P. G. de Gennes,et al.  Microemulsions and the flexibility of oil/water interfaces , 1982 .

[26]  A. Polyakov Quantum Geometry of Bosonic Strings , 1981 .

[27]  J. Lang,et al.  Nonionic surfactant mixtures. I. Phase equilibria in C10E4–H2O and closed‐loop coexistence , 1980 .

[28]  G. Benedek,et al.  Quasielastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt-lecithin solutions. , 1980, Biochemistry.

[29]  J.-M. Drouffe,et al.  Strong coupling phase in lattice gauge theories at large dimension , 1979 .

[30]  Tom C. Lubensky,et al.  Statistics of lattice animals and dilute branched polymers , 1979 .

[31]  G. Parisi Hausdorff dimensions and gauge theories , 1979 .

[32]  S. Prager,et al.  Statistical thermodynamics of phase equilibria in microemulsions , 1978 .

[33]  T. Mitsui,et al.  Phase equilibria in the water-dodecane-pentaoxyethylene dodecylether system , 1974 .

[34]  T. Piran,et al.  Statistical mechanics of membranes and surfaces : Jerusalem, 28 Dec. 87-6 Jan. 88 , 1989 .

[35]  Alexander M. Polyakov,et al.  Gauge Fields And Strings , 1987 .

[36]  L. Garrido,et al.  Applications of Field Theory to Statistical Mechanics , 1985 .

[37]  J. Israelachvili Intermolecular and surface forces , 1985 .

[38]  Gordon J. T. Tiddy,et al.  Phase behaviour of polyoxyethylene surfactants with water. Mesophase structures and partial miscibility (cloud points) , 1983 .

[39]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[40]  John W. Cahn,et al.  Phase Separation by Spinodal Decomposition in Isotropic Systems , 1965 .