Optimal sensor placement in linear arrays: Part I — AoA based localization

In this paper, we examine the optimal linear separation requirements for AoA sensors, in order to achieve the best performance in estimating the position of a target subjected to noisy measurements. Cramer-Rao inequality and the corresponding Fisher information matrix are used to analyze the sensor-target geometry, in order to characterize localization performance with respect to the linear spacial distribution of sensors.

[1]  K. Gong,et al.  Fundamental properties and performance of conventional bearings-only target motion analysis , 1984 .

[2]  Pubudu N. Pathirana,et al.  Optimal Trajectories for Homing Navigation with Bearing Measurements , 2008 .

[3]  Andrew G. Dempster,et al.  Dilution of precision in angle-of-arrival positioning systems , 2006 .

[4]  Pubudu N. Pathirana,et al.  Tracking multiple mobile agents with single frequency Continuous Wave radar , 2009, 2009 International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP).

[5]  Kutluyil Dogançay Optimized path planning for UAVS with AOA/scan based sensors , 2007, 2007 15th European Signal Processing Conference.

[6]  Pubudu N. Pathirana,et al.  Optimal sensor separation for AoA based localization via linear sensor array , 2010, 2010 Sixth International Conference on Intelligent Sensors, Sensor Networks and Information Processing.

[7]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[8]  Alfonso Farina,et al.  Target tracking with bearings - Only measurements , 1999, Signal Process..

[9]  M. Gavish,et al.  Nth-order dynamics target observability from angle measurements , 1988 .

[10]  Brian D. O. Anderson,et al.  Optimality analysis of sensor-target localization geometries , 2010, Autom..

[11]  J. Irons,et al.  Multiple-Angle Observations of Reflectance Anisotropy from an Airborne Linear Array Sensor , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Y. Oshman,et al.  Optimization of observer trajectories for bearings-only target localization , 1999 .

[13]  R. G. Stansfield,et al.  Statistical theory of d.f. fixing , 1947 .

[14]  Alexei Gorokhov,et al.  Resolving manifold ambiguities in direction-of-arrival estimation for nonuniform linear antenna arrays , 1999, IEEE Trans. Signal Process..

[15]  Francesco Bullo,et al.  Optimal sensor placement and motion coordination for target tracking , 2006, Autom..

[16]  K. Doganay Online Optimization of Receiver Trajectories for Scan-Based Emitter Localization , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[17]  Yoram Bresler,et al.  On the number of signals resolvable by a uniform linear array , 1986, IEEE Trans. Acoust. Speech Signal Process..

[18]  Sumit Roy,et al.  Joint DOA estimation and phase calibration of linear equispaced (LES) arrays , 1994, IEEE Trans. Signal Process..

[19]  Alexei Gorokhov,et al.  Detection-estimation of more uncorrelated Gaussian sources than sensors in nonuniform linear antenna arrays. II. Partially augmentable arrays , 2001, IEEE Trans. Signal Process..

[20]  Don J. Torrieri,et al.  Statistical Theory of Passive Location Systems , 1984, IEEE Transactions on Aerospace and Electronic Systems.

[21]  Sumit Roy,et al.  Self-calibration of linear equi-spaced (LES) arrays , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[22]  Taek Lyul Song,et al.  Observability of target tracking with bearings-only measurements , 1996 .

[23]  Kutluyil Dogançay,et al.  Optimal angular sensor separation for AOA localization , 2008, Signal Process..

[24]  WADE FOY,et al.  Position-Location Solutions by Taylor-Series Estimation , 1976, IEEE Transactions on Aerospace and Electronic Systems.