暂无分享,去创建一个
[1] Bruno Woltzenlogel Paleo,et al. The Ontological Modal Collapse as a Collapse of the Square of Opposition , 2016 .
[2] Christoph Benzmüller,et al. Implementing and Evaluating Provers for First-order Modal Logics , 2012, ECAI.
[3] Georg Struth,et al. Automating Algebraic Methods in Isabelle , 2011, ICFEM.
[4] Bruno Woltzenlogel Paleo,et al. On Logic Embeddings and Gödel's God , 2014, WADT.
[5] Jan J. M. M. Rutten,et al. Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..
[6] Natarajan Shankar,et al. A Brief Overview of PVS , 2008, TPHOLs.
[7] C. Anthony Anderson,et al. Gödel's ontological proof revisited , 1996 .
[8] Lawrence C. Paulson,et al. Exploring Properties of Normal Multimodal Logics in Simple Type Theory with LEO-II , 2008 .
[9] Alonzo Church,et al. A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.
[10] Edward N. Zalta,et al. Relations Versus Functions at the Foundations of Logic: Type-Theoretic Considerations , 2011, J. Log. Comput..
[11] Christoph Benzmüller,et al. Sweet SIXTEEN: Automation via Embedding into Classical Higher-Order Logic , 2016 .
[12] Christoph Benzmüller,et al. Combining and automating classical and non-classical logics in classical higher-order logics , 2011, Annals of Mathematics and Artificial Intelligence.
[13] Christoph Benzmüller,et al. Automating Free Logic in Isabelle/HOL , 2016, ICMS.
[14] Jeremy Avigad,et al. The Lean Theorem Prover (System Description) , 2015, CADE.
[15] Cezary Kaliszyk,et al. HOL(y)Hammer: Online ATP Service for HOL Light , 2013, Math. Comput. Sci..
[16] M. Gordon,et al. Introduction to HOL: a theorem proving environment for higher order logic , 1993 .
[17] Christoph Benzmüller. Automating Access Control Logics in Simple Type Theory with LEO-II (Techreport) , 2009, SEC.
[18] M. Fitting. Types, Tableaus, and Gödel's God , 2002 .
[19] Christoph Benzmüller,et al. Simple Type Theory as Framework for Combining Logics , 2010, ArXiv.
[20] M. de Rijke,et al. Encoding Two-Valued Nonclassical Logics in Classical Logic , 2001, Handbook of Automated Reasoning.
[21] Cezary Kaliszyk,et al. Hammering towards QED , 2016, J. Formaliz. Reason..
[22] Lawrence C. Paulson,et al. The Higher-Order Prover Leo-II , 2015, Journal of Automated Reasoning.
[23] Pierre Castéran,et al. Interactive Theorem Proving and Program Development , 2004, Texts in Theoretical Computer Science An EATCS Series.
[24] Tobias Nipkow,et al. Nitpick: A Counterexample Generator for Higher-Order Logic Based on a Relational Model Finder , 2010, ITP.
[25] Rajeev Goré,et al. The Tableaux Work Bench , 2003, TABLEAUX.
[26] Andrew J. I. Jones,et al. Completeness and decidability results for a logic of contrary-to-duty conditionals , 2013, J. Log. Comput..
[27] Bruno Woltzenlogel Paleo,et al. Automating Gödel's Ontological Proof of God's Existence with Higher-order Automated Theorem Provers , 2014, ECAI.
[28] Tobias Nipkow,et al. A FORMAL PROOF OF THE KEPLER CONJECTURE , 2015, Forum of Mathematics, Pi.
[29] Dov M. Gabbay,et al. Handbook of the history of logic , 2004 .
[30] Chad E. Brown,et al. Satallax: An Automatic Higher-Order Prover , 2012, IJCAR.
[31] Volker Peckhaus,et al. Calculus ratiocinator versus characteristica universalis? The two traditions in logic, revisited , 2004 .
[32] Lawrence C. Paulson,et al. Extending Sledgehammer with SMT Solvers , 2011, Journal of Automated Reasoning.
[33] Dov M. Gabbay,et al. Handbook of Philosophical Logic: Volume 15 , 2010 .
[34] Lawrence S. Moss,et al. Coalgebraic Logic , 1999, Ann. Pure Appl. Log..
[35] Christoph Benzmüller,et al. Einsatz von Theorembeweisern in der Lehre , 2016, HDI.
[36] Christoph Benzmüller. Automating Quantified Conditional Logics in HOL , 2013, IJCAI.
[37] D.H.J. de Jongh,et al. The logic of the provability , 1998 .
[38] Bruno Woltzenlogel Paleo,et al. Experiments in Computational Metaphysics: Gödel’s Proof of God’s Existence , 2017 .
[39] Samson Abramsky,et al. Handbook of logic in computer science. , 1992 .
[40] Andre Scedrov,et al. Categories, allegories , 1990, North-Holland mathematical library.
[41] Ullrich Hustadt,et al. First-Order Resolution Methods for Modal Logics , 2013, Programming Logics.
[42] Leon van der Torre,et al. Input/Output Logics , 2000, J. Philos. Log..
[43] A. Hazen,et al. On Gödel's ontological proof , 1998 .
[44] Bruno Woltzenlogel Paleo,et al. Analysis of an Ontological Proof Proposed by Leibniz , 2016 .
[45] Lawrence C. Paulson,et al. Multimodal and intuitionistic logics in simple type theory , 2010, Log. J. IGPL.
[46] Lawrence Charles Paulson,et al. Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .
[47] Bruno Woltzenlogel Paleo,et al. Gödel's God on the Computer , 2013 .
[48] Bruno Woltzenlogel Paleo,et al. The Inconsistency in Gödel's Ontological Argument: A Success Story for AI in Metaphysics , 2016, IJCAI.
[49] David I. Beaver,et al. The Handbook of Logic and Language , 1997 .
[50] Bruno Woltzenlogel Paleo,et al. Higher-Order Modal Logics: Automation and Applications , 2015, Reasoning Web.
[51] Tobias Nipkow,et al. A Proof Assistant for Higher-Order Logic , 2002 .
[52] A. Anderson,et al. Some Emendations of Gödel's Ontological Proof , 1990 .
[53] Jordan Howard Sobel,et al. Logic and Theism: Arguments for and against Beliefs in God , 2003 .
[54] John Harrison,et al. HOL Light: An Overview , 2009, TPHOLs.
[55] Christoph Benzmüller,et al. LeoPARD - A Generic Platform for the Implementation of Higher-Order Reasoners , 2015, CICM.
[56] Christoph Benzmüller,et al. Cut-Elimination for Quantified Conditional Logic , 2017, J. Philos. Log..
[57] Christoph Benzmüller,et al. Invited Talk: On a (Quite) Universal Theorem Proving Approach and Its Application in Metaphysics , 2015, TABLEAUX.
[58] Bruno Woltzenlogel Paleo,et al. Gödel's God in Isabelle/HOL , 2013, Arch. Formal Proofs.
[59] Dale Miller,et al. Automation of Higher-Order Logic , 2014, Computational Logic.
[60] Petr Hájek,et al. Magari and others on Gödel’s ontological proof , 2017 .
[61] Simon Foster,et al. On the Fine-Structure of Regular Algebra , 2015, Journal of Automated Reasoning.
[62] Frode Bjørdal. Understanding Gödel's Ontological Argument , 1999 .
[63] Jessika Schulze,et al. Handbook Of Logic In Artificial Intelligence And Logic Programming , 2016 .
[64] Ullrich Hustadt,et al. MSPASS: Modal Reasoning by Translation and First-Order Resolution , 2000, TABLEAUX.
[65] J. Lambek,et al. Introduction to higher order categorical logic , 1986 .
[66] Christoph Benzmüller,et al. Tutorial on Reasoning in Expressive Non-Classical Logics with Isabelle/HOL , 2016, GCAI.
[67] Petr Hájek,et al. A New Small Emendation of Gödel's Ontological Proof , 2002, Stud Logica.
[68] Dominique Longin,et al. LoTREC: Logical Tableaux Research Engineering Companion , 2005, TABLEAUX.
[69] Christoph Benzmüller. Gödel's Ontological Argument Revisited -- Findings from a Computer-supported Analysis (invited) , 2015 .
[70] Bruno Woltzenlogel Paleo,et al. Interacting with Modal Logics in the Coq Proof Assistant , 2015, CSR.
[71] Karel Lambert. Free Logic: Selected Essays , 2002 .
[72] Frank Wolter,et al. Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.
[73] Renate A. Schmidt,et al. MetTeL2: Towards a Tableau Prover Generation Platform , 2012, PAAR@IJCAR.
[74] Mark Bickford,et al. Innovations in computational type theory using Nuprl , 2006, J. Appl. Log..
[75] Gottlob Frege,et al. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens , 1879 .