Universal Reasoning, Rational Argumentation and Human-Machine Interaction

Classical higher-order logic, when utilized as a meta-logic in which various other (classical and non-classical) logics can be shallowly embedded, is well suited for realising a universal logic reasoning approach. Universal logic reasoning in turn, as envisioned already by Leibniz, may support the rigorous formalisation and deep logical analysis of rational arguments within machines. A respective universal logic reasoning framework is described and a range of exemplary applications are discussed. In the future, universal logic reasoning in combination with appropriate, controlled forms of rational argumentation may serve as a communication layer between humans and intelligent machines.

[1]  Bruno Woltzenlogel Paleo,et al.  The Ontological Modal Collapse as a Collapse of the Square of Opposition , 2016 .

[2]  Christoph Benzmüller,et al.  Implementing and Evaluating Provers for First-order Modal Logics , 2012, ECAI.

[3]  Georg Struth,et al.  Automating Algebraic Methods in Isabelle , 2011, ICFEM.

[4]  Bruno Woltzenlogel Paleo,et al.  On Logic Embeddings and Gödel's God , 2014, WADT.

[5]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[6]  Natarajan Shankar,et al.  A Brief Overview of PVS , 2008, TPHOLs.

[7]  C. Anthony Anderson,et al.  Gödel's ontological proof revisited , 1996 .

[8]  Lawrence C. Paulson,et al.  Exploring Properties of Normal Multimodal Logics in Simple Type Theory with LEO-II , 2008 .

[9]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[10]  Edward N. Zalta,et al.  Relations Versus Functions at the Foundations of Logic: Type-Theoretic Considerations , 2011, J. Log. Comput..

[11]  Christoph Benzmüller,et al.  Sweet SIXTEEN: Automation via Embedding into Classical Higher-Order Logic , 2016 .

[12]  Christoph Benzmüller,et al.  Combining and automating classical and non-classical logics in classical higher-order logics , 2011, Annals of Mathematics and Artificial Intelligence.

[13]  Christoph Benzmüller,et al.  Automating Free Logic in Isabelle/HOL , 2016, ICMS.

[14]  Jeremy Avigad,et al.  The Lean Theorem Prover (System Description) , 2015, CADE.

[15]  Cezary Kaliszyk,et al.  HOL(y)Hammer: Online ATP Service for HOL Light , 2013, Math. Comput. Sci..

[16]  M. Gordon,et al.  Introduction to HOL: a theorem proving environment for higher order logic , 1993 .

[17]  Christoph Benzmüller Automating Access Control Logics in Simple Type Theory with LEO-II (Techreport) , 2009, SEC.

[18]  M. Fitting Types, Tableaus, and Gödel's God , 2002 .

[19]  Christoph Benzmüller,et al.  Simple Type Theory as Framework for Combining Logics , 2010, ArXiv.

[20]  M. de Rijke,et al.  Encoding Two-Valued Nonclassical Logics in Classical Logic , 2001, Handbook of Automated Reasoning.

[21]  Cezary Kaliszyk,et al.  Hammering towards QED , 2016, J. Formaliz. Reason..

[22]  Lawrence C. Paulson,et al.  The Higher-Order Prover Leo-II , 2015, Journal of Automated Reasoning.

[23]  Pierre Castéran,et al.  Interactive Theorem Proving and Program Development , 2004, Texts in Theoretical Computer Science An EATCS Series.

[24]  Tobias Nipkow,et al.  Nitpick: A Counterexample Generator for Higher-Order Logic Based on a Relational Model Finder , 2010, ITP.

[25]  Rajeev Goré,et al.  The Tableaux Work Bench , 2003, TABLEAUX.

[26]  Andrew J. I. Jones,et al.  Completeness and decidability results for a logic of contrary-to-duty conditionals , 2013, J. Log. Comput..

[27]  Bruno Woltzenlogel Paleo,et al.  Automating Gödel's Ontological Proof of God's Existence with Higher-order Automated Theorem Provers , 2014, ECAI.

[28]  Tobias Nipkow,et al.  A FORMAL PROOF OF THE KEPLER CONJECTURE , 2015, Forum of Mathematics, Pi.

[29]  Dov M. Gabbay,et al.  Handbook of the history of logic , 2004 .

[30]  Chad E. Brown,et al.  Satallax: An Automatic Higher-Order Prover , 2012, IJCAR.

[31]  Volker Peckhaus,et al.  Calculus ratiocinator versus characteristica universalis? The two traditions in logic, revisited , 2004 .

[32]  Lawrence C. Paulson,et al.  Extending Sledgehammer with SMT Solvers , 2011, Journal of Automated Reasoning.

[33]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic: Volume 15 , 2010 .

[34]  Lawrence S. Moss,et al.  Coalgebraic Logic , 1999, Ann. Pure Appl. Log..

[35]  Christoph Benzmüller,et al.  Einsatz von Theorembeweisern in der Lehre , 2016, HDI.

[36]  Christoph Benzmüller Automating Quantified Conditional Logics in HOL , 2013, IJCAI.

[37]  D.H.J. de Jongh,et al.  The logic of the provability , 1998 .

[38]  Bruno Woltzenlogel Paleo,et al.  Experiments in Computational Metaphysics: Gödel’s Proof of God’s Existence , 2017 .

[39]  Samson Abramsky,et al.  Handbook of logic in computer science. , 1992 .

[40]  Andre Scedrov,et al.  Categories, allegories , 1990, North-Holland mathematical library.

[41]  Ullrich Hustadt,et al.  First-Order Resolution Methods for Modal Logics , 2013, Programming Logics.

[42]  Leon van der Torre,et al.  Input/Output Logics , 2000, J. Philos. Log..

[43]  A. Hazen,et al.  On Gödel's ontological proof , 1998 .

[44]  Bruno Woltzenlogel Paleo,et al.  Analysis of an Ontological Proof Proposed by Leibniz , 2016 .

[45]  Lawrence C. Paulson,et al.  Multimodal and intuitionistic logics in simple type theory , 2010, Log. J. IGPL.

[46]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[47]  Bruno Woltzenlogel Paleo,et al.  Gödel's God on the Computer , 2013 .

[48]  Bruno Woltzenlogel Paleo,et al.  The Inconsistency in Gödel's Ontological Argument: A Success Story for AI in Metaphysics , 2016, IJCAI.

[49]  David I. Beaver,et al.  The Handbook of Logic and Language , 1997 .

[50]  Bruno Woltzenlogel Paleo,et al.  Higher-Order Modal Logics: Automation and Applications , 2015, Reasoning Web.

[51]  Tobias Nipkow,et al.  A Proof Assistant for Higher-Order Logic , 2002 .

[52]  A. Anderson,et al.  Some Emendations of Gödel's Ontological Proof , 1990 .

[53]  Jordan Howard Sobel,et al.  Logic and Theism: Arguments for and against Beliefs in God , 2003 .

[54]  John Harrison,et al.  HOL Light: An Overview , 2009, TPHOLs.

[55]  Christoph Benzmüller,et al.  LeoPARD - A Generic Platform for the Implementation of Higher-Order Reasoners , 2015, CICM.

[56]  Christoph Benzmüller,et al.  Cut-Elimination for Quantified Conditional Logic , 2017, J. Philos. Log..

[57]  Christoph Benzmüller,et al.  Invited Talk: On a (Quite) Universal Theorem Proving Approach and Its Application in Metaphysics , 2015, TABLEAUX.

[58]  Bruno Woltzenlogel Paleo,et al.  Gödel's God in Isabelle/HOL , 2013, Arch. Formal Proofs.

[59]  Dale Miller,et al.  Automation of Higher-Order Logic , 2014, Computational Logic.

[60]  Petr Hájek,et al.  Magari and others on Gödel’s ontological proof , 2017 .

[61]  Simon Foster,et al.  On the Fine-Structure of Regular Algebra , 2015, Journal of Automated Reasoning.

[62]  Frode Bjørdal Understanding Gödel's Ontological Argument , 1999 .

[63]  Jessika Schulze,et al.  Handbook Of Logic In Artificial Intelligence And Logic Programming , 2016 .

[64]  Ullrich Hustadt,et al.  MSPASS: Modal Reasoning by Translation and First-Order Resolution , 2000, TABLEAUX.

[65]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[66]  Christoph Benzmüller,et al.  Tutorial on Reasoning in Expressive Non-Classical Logics with Isabelle/HOL , 2016, GCAI.

[67]  Petr Hájek,et al.  A New Small Emendation of Gödel's Ontological Proof , 2002, Stud Logica.

[68]  Dominique Longin,et al.  LoTREC: Logical Tableaux Research Engineering Companion , 2005, TABLEAUX.

[69]  Christoph Benzmüller Gödel's Ontological Argument Revisited -- Findings from a Computer-supported Analysis (invited) , 2015 .

[70]  Bruno Woltzenlogel Paleo,et al.  Interacting with Modal Logics in the Coq Proof Assistant , 2015, CSR.

[71]  Karel Lambert Free Logic: Selected Essays , 2002 .

[72]  Frank Wolter,et al.  Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.

[73]  Renate A. Schmidt,et al.  MetTeL2: Towards a Tableau Prover Generation Platform , 2012, PAAR@IJCAR.

[74]  Mark Bickford,et al.  Innovations in computational type theory using Nuprl , 2006, J. Appl. Log..

[75]  Gottlob Frege,et al.  Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens , 1879 .