Interactions within the microbiome alter microbial interactions with host chemical defences and affect disease in a marine holobiont

[1]  Marie-Pierre L. Gauthier,et al.  Priority effects can persist across floral generations in nectar microbial metacommunities , 2018 .

[2]  T. Fukami,et al.  Role of priority effects in the early-life assembly of the gut microbiota , 2018, Nature Reviews Gastroenterology & Hepatology.

[3]  Jesse R. Zaneveld,et al.  Stress and stability: applying the Anna Karenina principle to animal microbiomes , 2017, Nature Microbiology.

[4]  T. Fukami,et al.  Dispersal enhances beta diversity in nectar microbes. , 2017, Ecology letters.

[5]  R. Kolter,et al.  Simplified and representative bacterial community of maize roots , 2017, Proceedings of the National Academy of Sciences.

[6]  A. Shade Diversity is the question, not the answer , 2016, The ISME Journal.

[7]  T. Thomas,et al.  Multiple opportunistic pathogens can cause a bleaching disease in the red seaweed Delisea pulchra. , 2016, Environmental microbiology.

[8]  Antoine Flahault,et al.  Climate change and infectious diseases , 2016, Public Health Reviews.

[9]  T. Thomas,et al.  A comprehensive analysis of the microbial communities of healthy and diseased marine macroalgae and the detection of known and potential bacterial pathogens , 2015, Front. Microbiol..

[10]  Mehdi Layeghifard,et al.  Seasonal community succession of the phyllosphere microbiome. , 2015, Molecular plant-microbe interactions : MPMI.

[11]  S. Alizon,et al.  What is a pathogen? Toward a process view of host-parasite interactions , 2014, Virulence.

[12]  C. Reddy,et al.  Seaweed-microbial interactions: key functions of seaweed-associated bacteria. , 2014, FEMS microbiology ecology.

[13]  A. M. Eren,et al.  Ecological Succession and Stochastic Variation in the Assembly of Arabidopsis thaliana Phyllosphere Communities , 2014, mBio.

[14]  A. Campbell,et al.  Demographic consequences of disease in a habitat-forming seaweed and impacts on interactions between natural enemies. , 2014, Ecology.

[15]  S. Hasnain,et al.  Emerging importance of holobionts in evolution and in probiotics , 2013, Gut Pathogens.

[16]  W. Wade,et al.  The oral microbiome in health and disease. , 2013, Pharmacological research.

[17]  E. Rosenberg,et al.  The Evolution of Holobionts , 2013 .

[18]  M. Kleerebezem,et al.  Microbiome dynamics of human epidermis following skin barrier disruption , 2012, Genome Biology.

[19]  J. Nicholson,et al.  Host-Gut Microbiota Metabolic Interactions , 2012, Science.

[20]  T. Thomas,et al.  Genomes and Virulence Factors of Novel Bacterial Pathogens Causing Bleaching Disease in the Marine Red Alga Delisea pulchra , 2011, PloS one.

[21]  S. Kjelleberg,et al.  Climate change and disease: bleaching of a chemically defended seaweed , 2011 .

[22]  S. Kjelleberg,et al.  Temperature induced bacterial virulence and bleaching disease in a chemically defended marine macroalga. , 2011, Environmental microbiology.

[23]  S. Mazmanian,et al.  The gut microbiota shapes intestinal immune responses during health and disease , 2009, Nature Reviews Immunology.

[24]  Kevin D. Lafferty,et al.  The ecology of climate change and infectious diseases , 2009 .

[25]  F. Narberhaus,et al.  Microbial thermosensors , 2009, Cellular and Molecular Life Sciences.

[26]  S. Allison,et al.  Resistance, resilience, and redundancy in microbial communities , 2008, Proceedings of the National Academy of Sciences.

[27]  Michael W Taylor,et al.  Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes , 2007 .

[28]  Yan Boucher,et al.  Use of 16S rRNA and rpoB Genes as Molecular Markers for Microbial Ecology Studies , 2006, Applied and Environmental Microbiology.

[29]  R. Nys,et al.  Chemically mediated antifouling in the red alga Delisea pulchra , 2006 .

[30]  John L. Harper,et al.  Ecology: from individuals to ecosystems. 4th edition , 2006 .

[31]  R. Nys,et al.  Cost of chemical defence in the red alga Delisea pulchra , 2006 .

[32]  M. Chapman,et al.  Early development of subtidal macrofaunal assemblages: relationships to period and timing of colonization , 2006 .

[33]  P. Moore Ecology: Roots of stability , 2005, Nature.

[34]  Michael W Taylor,et al.  Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. , 2005, Environmental microbiology.

[35]  J. Prosser,et al.  Bacterial diversity promotes community stability and functional resilience after perturbation. , 2005, Environmental microbiology.

[36]  R. Nys,et al.  CHEMICAL DEFENSE IN A MARINE ALGA: HERITABILITY AND THE POTENTIAL FOR SELECTION BY HERBIVORES , 2004 .

[37]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[38]  Michael W Taylor,et al.  Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. , 2004, Environmental microbiology.

[39]  S. Kjelleberg,et al.  Chemical defenses of seaweeds against microbial colonization , 1997, Biodegradation.

[40]  Joseph H. Connell,et al.  NATURAL DISTURBANCES AND DIRECTIONAL REPLACEMENT OF SPECIES , 2003 .

[41]  Alison P. Galvani,et al.  Epidemiology meets evolutionary ecology , 2003 .

[42]  S. Kjelleberg,et al.  Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. , 2002, Microbiology.

[43]  G. Gilbert Evolutionary ecology of plant diseases in natural ecosystems. , 2002, Annual review of phytopathology.

[44]  S. Kjelleberg,et al.  Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. , 2001, FEMS microbiology letters.

[45]  J. P. Grime,et al.  Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges , 2001, Science.

[46]  W. Stam,et al.  Phylogenetic analyses of Caulerpa taxifolia (Chlorophyta) and of its associated bacterial microflora provide clues to the origin of the Mediterranean introduction , 2001, Molecular ecology.

[47]  Eric E. Roden,et al.  SUCCESSIONAL CHANGES IN BACTERIAL ASSEMBLAGE STRUCTURE DURING EPILITHIC BIOFILM DEVELOPMENT , 2001 .

[48]  R. Nys,et al.  Geographic variation in halogenated furanones from the red alga Delisea pulchra and associated herbivores and epiphytes , 2000 .

[49]  K. Tilly,et al.  Temperature-regulated expression of bacterial virulence genes. , 2000, Microbes and infection.

[50]  R. Nys,et al.  Localisation and surface quantification of secondary metabolites in the red alga Delisea pulchra , 1999 .

[51]  S. Kjelleberg,et al.  Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. , 1999, Microbiology.

[52]  A. Read,et al.  Counting the cost of disease resistance. , 1998, Trends in ecology & evolution.

[53]  D. Relman,et al.  Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates , 1996, Clinical microbiology reviews.

[54]  J. Groot,et al.  The Wasting Disease and the Effect of Abiotic Factors (Light-Intensity, Temperature, Salinity) and Infection with Labyrinthula-Zosterae on the Phenolic Content of Zostera-Marina Shoots , 1995 .

[55]  K. R. Clarke,et al.  Non‐parametric multivariate analyses of changes in community structure , 1993 .

[56]  R. Nys,et al.  New halogenated furanones from the marine alga delisea pulchra (cf. fimbriata) , 1993 .

[57]  R. Colwell,et al.  Survival strategies of bacteria in the natural environment. , 1987, Microbiological reviews.

[58]  M. Carlile Prokaryotes and eukaryotes: strategies and successes , 1982 .

[59]  Wayne P. Sousa,et al.  EXPERIMENTAL INVESTIGATIONS OF DISTURBANCE AND ECOLOGICAL SUCCESSION IN A ROCKY INTERTIDAL ALGAL COMMUNITY , 1979 .

[60]  J. Connell,et al.  Mechanisms of Succession in Natural Communities and Their Role in Community Stability and Organization , 1977, The American Naturalist.

[61]  Steward T. A. Pickett,et al.  Succession: An Evolutionary Interpretation , 1976, The American Naturalist.

[62]  N. Mantel The detection of disease clustering and a generalized regression approach. , 1967, Cancer research.

[63]  The survival of Escherichia coli in nitrogen atmospheres under changing conditions of relative humidity. , 1966, Journal of general microbiology.

[64]  H. Gleason Further Views on the Succession‐Concept , 1927 .

[65]  H. Cowles The Ecological Relations of the Vegetation on the Sand Dunes of Lake Michigan (Concluded) , 1899, Botanical Gazette.

[66]  Henry C. Cowles,et al.  The Ecological Relations of the Vegetation on the Sand Dunes of Lake Michigan [Continued] , 1899, Botanical Gazette.