Joint Transmit and Receive Filter Optimization for Sub-Nyquist Delay-Doppler Estimation

In this paper, a framework is presented for the joint optimization of the analog transmit and receive filter with respect to a parameter estimation problem. At the receiver, conventional signal processing systems restrict the two-sided bandwidth of the analog prefilter <inline-formula><tex-math notation="LaTeX">$B$</tex-math></inline-formula> to the rate of the analog-to-digital converter <inline-formula><tex-math notation="LaTeX">$f_s$</tex-math> </inline-formula> to comply with the well-known Nyquist–Shannon sampling theorem. In contrast, here we consider a transceiver that by design violates the common paradigm <inline-formula><tex-math notation="LaTeX">$B\leq f_s$ </tex-math></inline-formula>. To this end, at the receiver, we allow for a higher prefilter bandwidth <inline-formula><tex-math notation="LaTeX">$B>f_s$</tex-math></inline-formula> and study the achievable parameter estimation accuracy under a fixed sampling rate when the transmit and receive filter are jointly optimized with respect to the Bayesian Cramér–Rao lower bound. For the case of delay-Doppler estimation, we propose to approximate the required Fisher information matrix and solve the transceiver design problem by an alternating optimization algorithm. The presented approach allows us to explore the Pareto-optimal region spanned by transmit and receive filters that are favorable under a weighted mean squared error criterion. We also discuss the computational complexity of the obtained transceiver design by visualizing the resulting ambiguity function. Finally, we verify the performance of the optimized designs by Monte Carlo simulations of a likelihood-based estimator.

[1]  S. Haykin,et al.  Cognitive radar: a way of the future , 2006, IEEE Signal Processing Magazine.

[2]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[3]  Jian Li,et al.  Range Compression and Waveform Optimization for MIMO Radar: A CramÉr–Rao Bound Based Study , 2007, IEEE Transactions on Signal Processing.

[4]  Jian Li,et al.  On Probing Signal Design For MIMO Radar , 2006, IEEE Transactions on Signal Processing.

[5]  Jian Li,et al.  MIMO Radar with Colocated Antennas , 2007, IEEE Signal Processing Magazine.

[6]  G. Carter,et al.  The generalized correlation method for estimation of time delay , 1976 .

[7]  Josef A. Nossek,et al.  Optimum analog receive filters for detection and inference under a sampling rate constraint , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[8]  Andreas Jakobsson,et al.  Subspace-based estimation of time delays and Doppler shifts , 1998, IEEE Trans. Signal Process..

[9]  Gene H. Golub,et al.  Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.

[10]  Hao He,et al.  Optimization of the Receive Filter and Transmit Sequence for Active Sensing , 2012, IEEE Transactions on Signal Processing.

[11]  Rick S. Blum,et al.  Minimax Robust MIMO Radar Waveform Design , 2007, IEEE Journal of Selected Topics in Signal Processing.

[12]  Wasim Huleihel,et al.  Optimal Adaptive Waveform Design for Cognitive MIMO Radar , 2013, IEEE Transactions on Signal Processing.

[13]  J. Klauder,et al.  The theory and design of chirp radars , 1960 .

[14]  Josef A. Nossek,et al.  Information-Preserving Transformations for Signal Parameter Estimation , 2014, IEEE Signal Processing Letters.

[15]  Richard G. Baraniuk,et al.  Signal Processing With Compressive Measurements , 2010, IEEE Journal of Selected Topics in Signal Processing.

[16]  Per K. Enge,et al.  Global positioning system: signals, measurements, and performance [Book Review] , 2002, IEEE Aerospace and Electronic Systems Magazine.

[17]  H. V. Trees,et al.  Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .

[18]  P. P. Vaidyanathan,et al.  MIMO Radar Ambiguity Properties and Optimization Using Frequency-Hopping Waveforms , 2008, IEEE Transactions on Signal Processing.

[19]  P. Stoica,et al.  Maximum likelihood methods in radar array signal processing , 1998, Proc. IEEE.

[20]  Yonina C. Eldar,et al.  Performance Bounds and Design Criteria for Estimating Finite Rate of Innovation Signals , 2010, IEEE Transactions on Information Theory.

[21]  Rick S. Blum,et al.  MIMO radar: an idea whose time has come , 2004, Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509).

[22]  Pier Luigi Dragotti,et al.  Universal sampling of signals with finite rate of innovation , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[23]  Daniel W. Bliss,et al.  Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[24]  Nathan A. Goodman,et al.  Theory and Application of SNR and Mutual Information Matched Illumination Waveforms , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[25]  Charles E. Cook,et al.  Radar Signals: An Introduction to Theory and Application , 1967 .

[26]  Vivek K. Goyal,et al.  Estimating Signals With Finite Rate of Innovation From Noisy Samples: A Stochastic Algorithm , 2007, IEEE Transactions on Signal Processing.

[27]  Martin Vetterli,et al.  Sampling and reconstruction of signals with finite rate of innovation in the presence of noise , 2005, IEEE Transactions on Signal Processing.

[28]  Ariela Zeira,et al.  Frequency domain Cramer-Rao bound for Gaussian processes , 1990, IEEE Trans. Acoust. Speech Signal Process..

[29]  S. Haykin,et al.  Optimal waveform design for cognitive radar , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[30]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[31]  Felix Antreich,et al.  Array Processing and Signal Design for Timing Synchronization , 2011 .

[32]  A. Robert Calderbank,et al.  Waveform Diversity in Radar Signal Processing , 2009, IEEE Signal Processing Magazine.

[33]  Calvin H. Wilcox,et al.  The Synthesis Problem for Radar Ambiguity Functions , 1991 .

[34]  Yujie Gu,et al.  Information-Theoretic Compressive Sensing Kernel Optimization and Bayesian Cramér–Rao Bound for Time Delay Estimation , 2017, IEEE Transactions on Signal Processing.

[35]  Arie Yeredor,et al.  The joint MAP-ML criterion and its relation to ML and to extended least-squares , 2000, IEEE Trans. Signal Process..

[36]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[37]  Tong Zhao,et al.  Adaptive Polarized Waveform Design for Target Tracking Based on Sequential Bayesian Inference , 2008, IEEE Transactions on Signal Processing.

[38]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[39]  S. Stein Algorithms for ambiguity function processing , 1981 .

[40]  Marian Verhelst,et al.  Where Analog Meets Digital: Analog?to?Information Conversion and Beyond , 2015, IEEE Solid-State Circuits Magazine.

[41]  A. Lee Swindlehurst,et al.  Filter design for a compressive sensing delay and Doppler estimation framework , 2014, 2014 48th Asilomar Conference on Signals, Systems and Computers.

[42]  Robert H. Walden,et al.  Analog-to-digital converter survey and analysis , 1999, IEEE J. Sel. Areas Commun..

[43]  Yonina C. Eldar,et al.  Xampling at the Rate of Innovation , 2011, IEEE Transactions on Signal Processing.

[44]  A. Nehorai,et al.  Information Theoretic Adaptive Radar Waveform Design for Multiple Extended Targets , 2007, IEEE Journal of Selected Topics in Signal Processing.

[45]  Yonina C. Eldar,et al.  Xampling: Analog to digital at sub-Nyquist rates , 2009, IET Circuits Devices Syst..

[46]  Daniel R. Fuhrmann,et al.  MIMO Radar Ambiguity Functions , 2006, IEEE Journal of Selected Topics in Signal Processing.

[47]  Joseph R. Guerci,et al.  Theory and application of optimum transmit-receive radar , 2000, Record of the IEEE 2000 International Radar Conference [Cat. No. 00CH37037].

[48]  Yonina C. Eldar,et al.  Sub-Nyquist radar prototype: Hardware and algorithm , 2014, IEEE Transactions on Aerospace and Electronic Systems.

[49]  Shengli Zhou,et al.  Signal Processing for Passive Radar Using OFDM Waveforms , 2010, IEEE Journal of Selected Topics in Signal Processing.

[50]  Pablo Coto-Millán,et al.  Utility and Production: Theory and Applications , 1999 .

[51]  Yonina C. Eldar,et al.  Xampling: Signal Acquisition and Processing in Union of Subspaces , 2009, IEEE Transactions on Signal Processing.

[52]  Mark R. Bell Information theory and radar waveform design , 1993, IEEE Trans. Inf. Theory.

[53]  Andreas Lenz,et al.  Analog transmit signal optimization for undersampled delay-Doppler estimation , 2017, 2017 25th European Signal Processing Conference (EUSIPCO).

[54]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..

[55]  Josef A. Nossek,et al.  Signal parameter estimation performance under a sampling rate constraint , 2015, 2015 49th Asilomar Conference on Signals, Systems and Computers.

[56]  H. Gu Ambiguity function and Cramer-Rao bound in the multisignal case , 1996 .