Bacterial Promoter Features Description and Their Application on E. coli in silico Prediction and Recognition Approaches

© 2012 Silva and Echeverrigaray, licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Bacterial Promoter Features Description and Their Application on E. coli in silico Prediction and Recognition Approaches

[1]  Andrew P. Bradley,et al.  The use of the area under the ROC curve in the evaluation of machine learning algorithms , 1997, Pattern Recognit..

[2]  Karmeshu,et al.  Study of DNA binding sites using the Rényi parametric entropy measure. , 2004, Journal of theoretical biology.

[3]  Hao Lin,et al.  The recognition and prediction of σ70 promoters in Escherichia coli K-12 , 2006 .

[4]  S. N. Parizi,et al.  N4: a precise and highly sensitive promoter predictor using neural network fed by nearest neighbors. , 2009, Genes & genetic systems.

[5]  Nidal Hilal,et al.  Neural network modeling for separation of bentonite in tubular ceramic membranes , 2008 .

[6]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[7]  R. Zhang,et al.  Improving promoter prediction for the NNPP 2 . 2 algorithm : a case study using Escherichia coli DNA sequences , 2004 .

[8]  Alexander Bolshoy,et al.  Sequence Complexity and DNA Curvature , 1999, Comput. Chem..

[9]  G. Zhou,et al.  Neural network optimization for E. coli promoter prediction. , 1991, Nucleic acids research.

[10]  Minghui Dong,et al.  Machine Learning Methods in the Application of Speech Emotion Recognition , 2010 .

[11]  Martin G. Reese,et al.  Application of a Time-delay Neural Network to Promoter Annotation in the Drosophila Melanogaster Genome , 2001, Comput. Chem..

[12]  N. Gautham,et al.  Effect of DNA structural flexibility on promoter strength--molecular dynamics studies of E. coli promoter sequences. , 2006, Biochemical and biophysical research communications.

[13]  India G. Hook-Barnard,et al.  Escherichia coli RNA Polymerase Recognition of a σ70-Dependent Promoter Requiring a −35 DNA Element and an Extended −10 TGn Motif , 2006, Journal of bacteriology.

[14]  Daniel Q Naiman,et al.  Sigma 28 promoter prediction in members of the Gammaproteobacteria. , 2007, FEMS microbiology letters.

[15]  T. D. Schneider,et al.  Anatomy of Escherichia coli σ70 promoters , 2006, Nucleic acids research.

[16]  Yagang Zhang,et al.  New Advances in Machine Learning , 2010 .

[17]  H. Margalit,et al.  Compilation of E. coli mRNA promoter sequences. , 1993, Nucleic acids research.

[18]  S. Burden,et al.  Sequence analysis Improving promoter prediction for the NNPP 2 . 2 algorithm : a case study using Escherichia coli DNA sequences , 2005 .

[19]  G. Izmirlian,et al.  Overview of Commonly Used Bioinformatics Methods and Their Applications , 2004, Annals of the New York Academy of Sciences.

[20]  Scheila de Avila e Silva,et al.  BacPP: bacterial promoter prediction--a tool for accurate sigma-factor specific assignment in enterobacteria. , 2011, Journal of theoretical biology.

[21]  Mathieu Blanchette,et al.  Seeder: discriminative seeding DNA motif discovery , 2008, Bioinform..

[22]  C. Nickerson,et al.  Role of curved DNA in binding of Escherichia coli RNA polymerase to promoters , 1995, Journal of bacteriology.

[23]  R. Hengge,et al.  The molecular basis of selective promoter activation by the σS subunit of RNA polymerase , 2007, Molecular microbiology.

[24]  Luis Herrera,et al.  A Hybrid Promoter Analysis Methodology for Prokaryotic Genomes , 2009, Fuzzy Systems in Bioinformatics and Computational Biology.

[25]  Alexander Gammerman,et al.  Sequence alignment kernel for recognition of promoter regions , 2003, Bioinform..

[26]  Sarath Chandra Janga,et al.  Structure and evolution of gene regulatory networks in microbial genomes. , 2007, Research in microbiology.

[27]  Manju Bansal,et al.  Structural properties of promoters: similarities and differences between prokaryotes and eukaryotes , 2005, Nucleic acids research.

[28]  Pierre-Étienne Jacques,et al.  Detection of prokaryotic promoters from the genomic distribution of hexanucleotide pairs , 2006, BMC Bioinformatics.

[29]  J. Collado-Vides,et al.  Conservation of DNA curvature signals in regulatory regions of prokaryotic genes. , 2003, Nucleic acids research.

[30]  I Mahadevan,et al.  Analysis of E.coli promoter structures using neural networks. , 1994, Nucleic acids research.

[31]  Julio Collado-Vides,et al.  Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals. , 2003, Journal of molecular biology.

[32]  E. Nudler,et al.  RNA polymerase holoenzyme: structure, function and biological implications. , 2003, Current opinion in microbiology.

[33]  R. Brennan,et al.  Prokaryotic transcription regulators: more than just the helix-turn-helix motif. , 2002, Current opinion in structural biology.

[34]  S. Durga Bhavani,et al.  Analysis of E.coli promoter recognition problem in dinucleotide feature space , 2007, Bioinform..

[35]  Kemal Polat,et al.  A novel approach to estimation of E. coli promoter gene sequences: Combining feature selection and least square support vector machine (FS_LSSVM) , 2007, Appl. Math. Comput..

[36]  Gregory R. Grant,et al.  Bioinformatics - The Machine Learning Approach , 2000, Comput. Chem..

[37]  A. Krishnamachari,et al.  Computational analysis of plant RNA Pol-II promoters. , 2006, Bio Systems.

[38]  Gunnar Rätsch,et al.  Support Vector Machines and Kernels for Computational Biology , 2008, PLoS Comput. Biol..

[39]  Gary D. Stormo,et al.  DNA binding sites: representation and discovery , 2000, Bioinform..

[40]  E. Morett,et al.  Compilation and analysis of σ54-dependent promoter sequences , 1999 .

[41]  M. Waterman,et al.  Rigorous pattern-recognition methods for DNA sequences. Analysis of promoter sequences from Escherichia coli. , 1985, Journal of molecular biology.

[42]  C. Gross,et al.  Conserved and Variable Functions of the σE Stress Response in Related Genomes , 2005, PLoS biology.

[43]  Manju Bansal,et al.  A novel method for prokaryotic promoter prediction based on DNA stability , 2005, BMC Bioinformatics.

[44]  Manju Bansal,et al.  Identification and annotation of promoter regions in microbial genome sequences on the basis of DNA stability , 2007, Journal of Biosciences.

[45]  James M. Hogan,et al.  Improved prediction of bacterial transcription start sites , 2006, Bioinform..

[46]  Anders Gorm Pedersen,et al.  Investigations of Escherichia coli Promoter Sequences with Artificial Neural Networks: New Signals Discovered Upstream of the Transcriptional Startpoint , 1995, ISMB.

[47]  S. Jonjić,et al.  Modulation of natural killer cell activity by viruses. , 2010, Current opinion in microbiology.

[48]  M. Chamberlin,et al.  DNA sequence analysis suggests that expression of flagellar and chemotaxis genes in Escherichia coli and Salmonella typhimurium is controlled by an alternative sigma factor. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Cathy H. Wu Artificial Neural Networks for Molecular Sequence Analysis , 1997, Comput. Chem..

[50]  C. Gross,et al.  Consensus sequence for Escherichia coli heat shock gene promoters. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[51]  A. Bolshoy,et al.  Involvement of DNA curvature in intergenic regions of prokaryotes , 2006, Nucleic acids research.

[52]  Sanjeev S. Tambe,et al.  Artificial neural networks for prediction of mycobacterial promoter sequences , 2003, Comput. Biol. Chem..

[53]  Mark A. Best,et al.  Bioinformatics: the Machine Learning Approach, 2nd edn , 2004 .

[54]  Shigeo Abe Support Vector Machines for Pattern Classification , 2010, Advances in Pattern Recognition.

[55]  Huiquan Wang,et al.  Promoter prediction and annotation of microbial genomes based on DNA sequence and structural responses to superhelical stress , 2006, BMC Bioinformatics.

[56]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[57]  D. K. Hawley,et al.  Compilation and analysis of Escherichia coli promoter DNA sequences. , 1983, Nucleic acids research.

[58]  Scheila de Avila e Silva,et al.  Rules extraction from neural networks applied to the prediction and recognition of prokaryotic promoters , 2011, Genetics and molecular biology.

[59]  Sivarao,et al.  Neural Network Multi Layer Perceptron Modeling For Surface Quality Prediction in Laser Machining , 2010 .

[60]  Guy Lapalme,et al.  A systematic analysis of performance measures for classification tasks , 2009, Inf. Process. Manag..

[61]  Simon Parsons,et al.  Bioinformatics: The Machine Learning Approach by P. Baldi and S. Brunak, 2nd edn, MIT Press, 452 pp., $60.00, ISBN 0-262-02506-X , 2004, The Knowledge Engineering Review.

[62]  É. Potvin,et al.  Sigma factors in Pseudomonas aeruginosa. , 2008, FEMS microbiology reviews.

[63]  J. SantaLucia,et al.  The thermodynamics of DNA structural motifs. , 2004, Annual review of biophysics and biomolecular structure.

[64]  Charles DeLisi,et al.  Machine learning for regulatory analysis and transcription factor target prediction in yeast , 2006, Systems and Synthetic Biology.

[65]  Karl Benson,et al.  Evolutionary computation method for pattern recognition of cis-acting sites. , 2003, Bio Systems.