Multi-line transmission combined with minimum variance beamforming in medical ultrasound imaging

Increasing medical ultrasound imaging frame rate is important in several applications such as cardiac diagnostic imaging, where it is desirable to be able to examine the temporal behavior of fast phases in the cardiac cycle. This is particularly true in 3-D imaging, where current frame rate is still much slower than standard 2-D, B-mode imaging. Recently, a method that increases frame rate, labeled multi-line transmission (MLT), was reintroduced and analyzed. In MLT scanning, the transmission is simultaneously focused at several directions. This scan mode introduces artifacts that stem from the overlaps of the receive main lobe with the transmit side lobes of additional transmit directions besides the one of interest. Similar overlaps occur between the transmit main lobe with receive side lobes. These artifacts are known in the signal processing community as cross-talk. Previous studies have concentrated on proper transmit and receive apodization, as well as transmit directions arrangement in the transmit event, to reduce the cross-talk artifacts. This study examines the possibility of using adaptive beamforming, specifically, minimum variance (MV) and linearly constrained minimum variance (LCMV) beamforming, to reduce the cross-talk artifacts, and maintain or even improve image quality characteristics. Simulation results, as well as experimental phantom and in vivo cardiac data, demonstrate the feasibility of reducing cross-talk artifacts with MV beamforming. The MV and LCMV results achieve superior spatial resolution, not only over other MLT methods with data-independent apodization, but even over that of single-line transmission (SLT) without receive apodization. The MV beamformer is shown to be less sensitive to wider transmit profiles required to reduce the transmit crosstalk artifacts. MV beamforming, combined with the wider transmit profiles, can provide a good approach for MLT scanning with reduced cross-talk artifacts, without compromising spatial resolution, and even improving it. We also demonstrate that the MV and LCMV beamformers lead to almost identical results. This is because of their very similar beampatterns, except for the sharp nullifying properties that the LCMV beamformer has around interfering beams.

[1]  Zvi Friedman,et al.  Multi-line acquisition with minimum variance beamforming in medical ultrasound imaging , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[2]  Hang Gao,et al.  Multi-transmit beam forming for fast cardiac imaging , 2011 .

[3]  Raoul Mallart,et al.  Improved imaging rate through simultaneous transmission of several ultrasound beams , 1992, SPIE Optics + Photonics.

[4]  Jian-yu Lu,et al.  Extended high-frame rate imaging method with limited-diffraction beams , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[5]  A. Drukarev,et al.  Beam transformation techinques for ultrasonic medical imaging , 1993, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[6]  W.F. Walker,et al.  A constrained adaptive beamformer for medical ultrasound: initial results , 2002, 2002 IEEE Ultrasonics Symposium, 2002. Proceedings..

[7]  K. Kristoffersen,et al.  Parallel beamforming using synthetic transmit beams , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[8]  Piero Tortoli,et al.  Multi-Transmit Beam Forming for Fast Cardiac Imaging—Experimental Validation and In Vivo Application , 2014, IEEE Transactions on Medical Imaging.

[9]  Sverre Holm,et al.  Speckle Statistics in Adaptive Beamforming , 2007 .

[10]  A. Austeng,et al.  Benefits of minimum-variance beamforming in medical ultrasound imaging , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[11]  Marc D Weinshenker,et al.  Explososcan: a parallel processing technique for high speed ultrasound imaging with linear phased arrays. , 1984 .

[12]  Magali Sasso,et al.  Medical ultrasound imaging using the fully adaptive beamformer , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[13]  Renbiao Wu,et al.  Time-delay- and time-reversal-based robust capon beamformers for ultrasound imaging , 2005, IEEE Transactions on Medical Imaging.

[14]  Francois Vignon,et al.  Capon beamforming in medical ultrasound imaging with focused beams , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[15]  Jan D'hooge,et al.  Multi-transmit beam forming for fast cardiac imaging-a simulation study , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[16]  L. Demi,et al.  Parallel transmit beamforming using orthogonal frequency division multiplexing applied to harmonic Imaging-A feasibility study , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[17]  H. Torp,et al.  Multi-line transmission in 3-D with reduced crosstalk artifacts: a proof of concept study , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[18]  O. L. Frost,et al.  An algorithm for linearly constrained adaptive array processing , 1972 .

[19]  S.W. Smith,et al.  High-speed ultrasound volumetric imaging system. II. Parallel processing and image display , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  Bastien Denarie,et al.  Coherent Plane Wave Compounding for Very High Frame Rate Ultrasonography of Rapidly Moving Targets , 2013, IEEE Transactions on Medical Imaging.

[21]  Toshio Shirasaka Ultrasonic imaging apparatus using pulsed Doppler signal , 1989 .

[22]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[23]  A. Austeng,et al.  Adaptive Beamforming Applied to Medical Ultrasound Imaging , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[24]  M. Fink,et al.  Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[25]  Hiroshi Kanai,et al.  High-frame-rate echocardiography using diverging transmit beams and parallel receive beamforming , 2011, Journal of Medical Ultrasonics.

[26]  Thomas Kailath,et al.  On spatial smoothing for direction-of-arrival estimation of coherent signals , 1985, IEEE Trans. Acoust. Speech Signal Process..

[27]  Hon Fai Choi,et al.  Comparison of conventional parallel beamforming with plane wave and diverging wave imaging for cardiac applications: a simulation study , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.