Evolution study of the Baeyer-Villiger monooxygenases enzyme family: functional importance of the highly conserved residues.

[1]  L. Rychlewski,et al.  Expanding the set of rhodococcal Baeyer–Villiger monooxygenases by high-throughput cloning, expression and substrate screening , 2012, Applied Microbiology and Biotechnology.

[2]  The UniProt Consortium,et al.  Reorganizing the protein space at the Universal Protein Resource (UniProt) , 2011, Nucleic Acids Res..

[3]  Michele Magrane,et al.  UniProt Knowledgebase: a hub of integrated protein data , 2011, Database J. Biol. Databases Curation.

[4]  Alexandre G. de Brevern,et al.  Protein Peeling 3D: new tools for analyzing protein structures , 2011, Bioinform..

[5]  V. Wohlgemuth Applications of Baeyer-Villiger Monooxygenases in Organic Synthesis , 2010 .

[6]  Uwe T Bornscheuer,et al.  Enzymatic synthesis of enantiomerically pure beta-amino ketones, beta-amino esters, and beta-amino alcohols with Baeyer-Villiger monooxygenases. , 2010, Chemistry.

[7]  Uwe T Bornscheuer,et al.  Exploiting the regioselectivity of Baeyer-Villiger monooxygenases for the formation of beta-amino acids and beta-amino alcohols. , 2010, Angewandte Chemie.

[8]  A. Berghuis,et al.  Crystal structures of cyclohexanone monooxygenase reveal complex domain movements and a sliding cofactor. , 2009, Journal of the American Chemical Society.

[9]  M. Gutiérrez,et al.  Preparative scale Baeyer–Villiger biooxidation at high concentration using recombinant Escherichia coli and in situ substrate feeding and product removal process , 2008, Nature Protocols.

[10]  Daniel H. Huson,et al.  Dendroscope: An interactive viewer for large phylogenetic trees , 2007, BMC Bioinformatics.

[11]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[12]  V. Alphand,et al.  Asymmetric Baeyer–Villiger Biooxidation of α‐Substituted Cyanocyclohexanones: Influence of the Substituent Length on Regio‐ and Enantioselectivity , 2007 .

[13]  Katrin Stierand,et al.  From Modeling to Medicinal Chemistry: Automatic Generation of Two‐Dimensional Complex Diagrams , 2007, ChemMedChem.

[14]  Peter B. McGarvey,et al.  UniRef: comprehensive and non-redundant UniProt reference clusters , 2007, Bioinform..

[15]  M. Fraaije,et al.  Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. , 2006, Journal of biotechnology.

[16]  Katrin Stierand,et al.  Molecular complexes at a glance: automated generation of two-dimensional complex diagrams , 2006, Bioinform..

[17]  Serge A. Hazout,et al.  Protein Peeling 2: a web server to convert protein structures into series of protein units , 2006, Nucleic Acids Res..

[18]  Y. Konishi,et al.  Pseudomonad Cyclopentadecanone Monooxygenase Displaying an Uncommon Spectrum of Baeyer-Villiger Oxidations of Cyclic Ketones , 2006, Applied and Environmental Microbiology.

[19]  Serge A. Hazout,et al.  'Protein Peeling': an approach for splitting a 3D protein structure into compact fragments , 2006, Bioinform..

[20]  Andrea Mattevi,et al.  Crystal structure of a Baeyer-Villiger monooxygenase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  N. Ben-Tal,et al.  Comparison of site-specific rate-inference methods for protein sequences: empirical Bayesian methods are superior. , 2004, Molecular biology and evolution.

[22]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[23]  Geoffrey J. Barton,et al.  The Jalview Java alignment editor , 2004, Bioinform..

[24]  Marco W. Fraaije,et al.  Discovery of a thermostable Baeyer–Villiger monooxygenase by genome mining , 2004, Applied Microbiology and Biotechnology.

[25]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[26]  J. Woodley,et al.  Towards large-scale synthetic applications of Baeyer-Villiger monooxygenases. , 2003, Trends in biotechnology.

[27]  Marco W. Fraaije,et al.  Baeyer-Villiger monooxygenases, an emerging family of flavin-dependent biocatalysts , 2003 .

[28]  M. Mihovilovic,et al.  Monooxygenase‐Mediated Baeyer−Villiger Oxidations , 2002 .

[29]  Dick B Janssen,et al.  Identification of a Baeyer–Villiger monooxygenase sequence motif , 2002, FEBS letters.

[30]  Adam Godzik,et al.  Clustering of highly homologous sequences to reduce the size of large protein databases , 2001, Bioinform..

[31]  O. Vallon New sequence motifs in flavoproteins: Evidence for common ancestry and tools to predict structure , 2000, Proteins.

[32]  H. Edelsbrunner,et al.  Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design , 1998, Protein science : a publication of the Protein Society.

[33]  M. Eppink,et al.  Identification of a novel conserved sequence motif in flavoprotein hydroxylases with a putative dual function in FAD/NAD(P)H binding , 1997, Protein science : a publication of the Protein Society.

[34]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[35]  A. Willetts Structural studies and synthetic applications of Baeyer-Villiger monooxygenases. , 1997, Trends in biotechnology.

[36]  F. Cohen,et al.  An evolutionary trace method defines binding surfaces common to protein families. , 1996, Journal of molecular biology.

[37]  T L Blundell,et al.  An automatic method involving cluster analysis of secondary structures for the identification of domains in proteins , 1995, Protein science : a publication of the Protein Society.

[38]  D. Shortle,et al.  Mutational studies of protein structures and their stabilities , 1992, Quarterly Reviews of Biophysics.

[39]  C. Walsh,et al.  Acinetobacter cyclohexanone monooxygenase: gene cloning and sequence determination , 1988, Journal of bacteriology.

[40]  P. Terpstra,et al.  Prediction of the Occurrence of the ADP-binding βαβ-fold in Proteins, Using an Amino Acid Sequence Fingerprint , 1986 .

[41]  P. Terpstra,et al.  Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. , 1986, Journal of molecular biology.

[42]  M G Rossmann,et al.  Letter: Molecular symmetry axes and subunit interfaces in certain dehydrogenases. , 1973, Journal of molecular biology.

[43]  A. Baeyer,et al.  Einwirkung des Caro'schen Reagens auf Ketone , 1899 .