An online background subtraction algorithm using a contiguously weighted linear regression model

In this paper, we propose a fast online background subtraction algorithm detecting a contiguous foreground. The proposed algorithm consists of a background model and a foreground model. The background model is a regression based low rank model. It seeks a low rank background subspace and represents the background as the linear combination of the basis spanning the subspace. The foreground model promotes the contiguity in the foreground detection. It encourages the foreground to be detected as whole regions rather than separated pixels. We formulate the background and foreground model into a contiguously weighted linear regression problem. This problem can be solved efficiently and it achieves an online scheme. The experimental comparison with most recent algorithms on the benchmark dataset demonstrates the high effectiveness of the proposed algorithm.

[1]  Nikos Paragios,et al.  Background modeling and subtraction of dynamic scenes , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[2]  Ieee Staff 2017 25th European Signal Processing Conference (EUSIPCO) , 2017 .

[3]  Stuart J. Russell,et al.  Image Segmentation in Video Sequences: A Probabilistic Approach , 1997, UAI.

[4]  James M. Rehg,et al.  GOSUS: Grassmannian Online Subspace Updates with Structured-Sparsity , 2013, 2013 IEEE International Conference on Computer Vision.

[5]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[6]  Laura Balzano,et al.  Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Lucia Maddalena,et al.  A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications , 2008, IEEE Transactions on Image Processing.

[8]  Brendt Wohlberg,et al.  A Matlab implementation of a fast incremental principal component pursuit algorithm for Video Background Modeling , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[9]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[12]  Ezequiel López-Rubio,et al.  Online Learning by Stochastic Approximation for Background Modeling , 2014 .

[13]  Brendt Wohlberg,et al.  Incremental Principal Component Pursuit for Video Background Modeling , 2015, Journal of Mathematical Imaging and Vision.

[14]  Namrata Vaswani,et al.  Support-Predicted Modified-CS for recursive robust principal components' Pursuit , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[15]  Martin Kleinsteuber,et al.  pROST : A Smoothed Lp-norm Robust Online Subspace Tracking Method for Realtime Background Subtraction in Video , 2013, ArXiv.

[16]  Martin Kleinsteuber,et al.  pROST: a smoothed $$\ell _p$$ℓp-norm robust online subspace tracking method for background subtraction in video , 2013, Machine Vision and Applications.

[17]  Qi Tian,et al.  Foreground object detection from videos containing complex background , 2003, MULTIMEDIA '03.

[18]  王晓刚,et al.  Background Subtraction via Robust Dictionary Learning , 2011 .

[19]  Ezequiel López-Rubio,et al.  Foreground Detection in Video Sequences with Probabilistic Self-Organizing Maps , 2011, Int. J. Neural Syst..

[20]  Xiaowei Zhou,et al.  Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[22]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.