Deep Markov Chain Monte Carlo
暂无分享,去创建一个
Babak Shahbaba | Luis Martinez Lomeli | Tian Chen | Shiwei Lan | B. Shahbaba | Shiwei Lan | T. Chen | L. M. Lomeli
[1] A. Kennedy,et al. Hybrid Monte Carlo , 1988 .
[2] Babak Shahbaba,et al. Split Hamiltonian Monte Carlo , 2011, Stat. Comput..
[3] Babak Shahbaba,et al. Neural network gradient Hamiltonian Monte Carlo , 2017, Computational Statistics.
[4] Michael I. Jordan,et al. Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..
[5] Yee Whye Teh,et al. Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.
[6] Andrew M. Stuart,et al. Geometric MCMC for infinite-dimensional inverse problems , 2016, J. Comput. Phys..
[7] Hongkai Zhao,et al. Variational Hamiltonian Monte Carlo via Score Matching. , 2016, Bayesian analysis.
[8] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[9] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[10] Jascha Sohl-Dickstein,et al. Generalizing Hamiltonian Monte Carlo with Neural Networks , 2017, ICLR.
[11] Tim Salimans,et al. Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression , 2012, ArXiv.
[12] Tianqi Chen,et al. Stochastic Gradient Hamiltonian Monte Carlo , 2014, ICML.
[13] Michael I. Jordan,et al. Exploiting Tractable Substructures in Intractable Networks , 1995, NIPS.
[14] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine-mediated learning.
[15] Babak Shahbaba,et al. Spherical Hamiltonian Monte Carlo for Constrained Target Distributions , 2013, ICML.
[16] Babak Shahbaba,et al. Wormhole Hamiltonian Monte Carlo , 2014, AAAI.
[17] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[18] Stefano Ermon,et al. A-NICE-MC: Adversarial Training for MCMC , 2017, NIPS.
[19] Shiwei Lan,et al. Adaptive dimension reduction to accelerate infinite-dimensional geometric Markov Chain Monte Carlo , 2018, J. Comput. Phys..
[20] Michael Betancourt,et al. The Fundamental Incompatibility of Scalable Hamiltonian Monte Carlo and Naive Data Subsampling , 2015, ICML.
[21] Babak Shahbaba,et al. Hamiltonian Monte Carlo acceleration using surrogate functions with random bases , 2015, Statistics and Computing.
[22] Babak Shahbaba,et al. Precomputing strategy for Hamiltonian Monte Carlo method based on regularity in parameter space , 2015, Computational Statistics.
[23] Arthur Gretton,et al. Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families , 2015, NIPS.
[24] Kurt Hornik,et al. Neural networks and principal component analysis: Learning from examples without local minima , 1989, Neural Networks.
[25] Max Welling,et al. Markov Chain Monte Carlo and Variational Inference: Bridging the Gap , 2014, ICML.
[26] J. M. Sanz-Serna,et al. Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.
[27] Tiangang Cui,et al. Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..
[28] Nando de Freitas,et al. Variational MCMC , 2001, UAI.
[29] Juha Karhunen,et al. Approximate Riemannian Conjugate Gradient Learning for Fixed-Form Variational Bayes , 2010, J. Mach. Learn. Res..
[30] Francis R. Bach,et al. Online Learning for Latent Dirichlet Allocation , 2010, NIPS.
[31] Michael Betancourt,et al. A Conceptual Introduction to Hamiltonian Monte Carlo , 2017, 1701.02434.