Analytical properties of horizontal visibility graphs in the Feigenbaum scenario.
暂无分享,去创建一个
Lucas Lacasa | Bartolo Luque | Alberto Robledo | B. Luque | L. Lacasa | F. Ballesteros | A. Robledo | Fernando J Ballesteros
[1] Simone Severini,et al. A characterization of horizontal visibility graphs and combinatorics on words , 2010, 1010.1850.
[2] H. Schuster. Deterministic chaos: An introduction , 1984 .
[3] J. C. Nuño,et al. The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion , 2009, 0901.0888.
[4] A. Robledo. RENORMALIZATION GROUP, ENTROPY OPTIMIZATION, AND NONEXTENSIVITY AT CRITICALITY , 1999 .
[5] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[6] M. Newman,et al. Renormalization Group Analysis of the Small-World Network Model , 1999, cond-mat/9903357.
[7] R. Rosenfeld. Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.
[8] Dietmar Saupe,et al. Chaos and fractals - new frontiers of science , 1992 .
[9] B. Luque,et al. Horizontal visibility graphs: exact results for random time series. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[10] Manfred Schroeder,et al. Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise , 1992 .
[11] S. Strogatz,et al. Identical phase oscillators with global sinusoidal coupling evolve by Mobius group action. , 2009, Chaos.
[12] Hartmut Jürgens,et al. Chaos and Fractals: New Frontiers of Science , 1992 .
[13] B. Huberman,et al. Fluctuations and simple chaotic dynamics , 1982 .
[14] F. Radicchi,et al. Complex networks renormalization: flows and fixed points. , 2008, Physical review letters.
[15] Ariel Fernández,et al. H. G. Schuster: Deterministic Chaos, Second Revised Edition, VCH Verlagsgesellschaft, Weinheim. 273 Seiten, Preis: DM 108,– , 1988 .
[16] 宁北芳,et al. 疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .
[17] Michael Small,et al. Recurrence-based time series analysis by means of complex network methods , 2010, Int. J. Bifurc. Chaos.
[18] Mark E. J. Newman,et al. The Structure and Function of Complex Networks , 2003, SIAM Rev..
[19] Shilpa Chakravartula,et al. Complex Networks: Structure and Dynamics , 2014 .
[20] S. Grossmann,et al. Invariant Distributions and Stationary Correlation Functions of One-Dimensional Discrete Processes , 1977 .
[21] L. Amaral,et al. Duality between Time Series and Networks , 2011, PloS one.
[22] Lucas Lacasa,et al. Description of stochastic and chaotic series using visibility graphs. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[23] Albert-László Barabási,et al. Statistical mechanics of complex networks , 2001, ArXiv.
[24] B. Kendall. Nonlinear Dynamics and Chaos , 2001 .
[25] M Small,et al. Complex network from pseudoperiodic time series: topology versus dynamics. , 2006, Physical review letters.
[26] S. Strogatz. Exploring complex networks , 2001, Nature.
[27] M. Feigenbaum. Quantitative universality for a class of nonlinear transformations , 1978 .
[28] M. Feigenbaum. The universal metric properties of nonlinear transformations , 1979 .
[29] A. Barabasi,et al. Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.
[30] Lucas Lacasa,et al. From time series to complex networks: The visibility graph , 2008, Proceedings of the National Academy of Sciences.
[31] Shlomo Havlin,et al. Origins of fractality in the growth of complex networks , 2005, cond-mat/0507216.
[32] Robin Wilson,et al. Modern Graph Theory , 2013 .
[33] Carlo Sirtori. The New Frontiers of Science , 1970 .
[34] Lucas Lacasa,et al. Feigenbaum Graphs: A Complex Network Perspective of Chaos , 2011, PloS one.
[35] S. Havlin,et al. Self-similarity of complex networks , 2005, Nature.