A Tableau Calculus for Pronoun Resolution
暂无分享,去创建一个
[1] Lawrence S. Moss. Exploring Logical Dynamics, Johan van Benthem , 2000, J. Log. Lang. Inf..
[2] Jeroen Groenendijk,et al. Dynamic predicate logic , 1991 .
[3] M. de Rijke,et al. inference and Natural language semantics , 1998 .
[4] Yehoshua Bar-Hillel,et al. Language and Information , 1964 .
[5] M. Fitting. First-order logic and automated theorem proving (2nd ed.) , 1996 .
[6] Kees van Deemter. Ambiguity and Idiosyncratic Interpretation , 1998, J. Semant..
[7] Melvin Fitting,et al. First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.
[8] Karsten Konrad,et al. Higher-Order Automated Theorem Proving for Natural Language Semantics , 1998 .
[9] Tomek Strzalkowski,et al. From Discourse to Logic , 1991 .
[10] van Cj Kees Deemter. Ambiguity and the principle of idiosyncratic interpretation , 1997 .
[11] M. de Rijke,et al. A Resolution Calculus for Dynamic Semantics , 1998, JELIA.
[12] Fiora Pirri,et al. First order abduction via tableau and sequent calculi , 1993, Log. J. IGPL.
[13] J. Davenport. Editor , 1960 .
[14] D. Over,et al. Studies in the Way of Words. , 1989 .
[15] A. G. Oettinger,et al. Language and information , 1968 .
[16] Peter H. Schmitt,et al. Implementing Semantic Tableaux , 1999 .
[17] H. Alshawi,et al. The Core Language Engine , 1994 .
[18] Maarten de Rijke,et al. A Tableaux Calculus for Ambiguous Quantification , 1998, TABLEAUX.
[19] A. Avramides. Studies in the Way of Words , 1992 .
[20] Johan van Benthem,et al. Exploring logical dynamics , 1996, Studies in logic, language and information.