The automorphism group of separable states in quantum information theory
暂无分享,去创建一个
[1] Ehud Moshe Baruch,et al. Linear preservers on spaces of hermitian or real symmetric matrices , 1993 .
[2] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.
[3] M. Horodecki,et al. Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.
[4] V. Vedral,et al. Entanglement measures and purification procedures , 1997, quant-ph/9707035.
[5] Chi-Kwong Li,et al. Induced operators on symmetry classes of tensors , 2001 .
[6] Leonid Gurvits. Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.
[8] K. Życzkowski,et al. Geometry of Quantum States: Index , 2007 .
[9] Martin B. Plenio,et al. An introduction to entanglement measures , 2005, Quantum Inf. Comput..
[10] K. Życzkowski,et al. Geometry of Quantum States , 2007 .
[11] A. Miranowicz,et al. Closed formula for the relative entropy of entanglement , 2008, 0805.3134.
[12] F. Shultz,et al. Unique decompositions, faces, and automorphisms of separable states , 2009, 0906.1761.
[13] S. Friedland,et al. Numerical estimation of the relative entropy of entanglement , 2010 .
[14] N. Johnston. Characterizing operations preserving separability measures via linear preserver problems , 2010, 1008.3633.
[15] S. Friedland,et al. An explicit expression for the relative entropy of entanglement in all dimensions , 2010, 1007.4544.
[16] Jaroslaw Adam Miszczak,et al. Product numerical range in a space with tensor product structure , 2010, 1008.3482.
[17] M. Lewenstein,et al. Quantum Entanglement , 2020, Quantum Mechanics.