The automorphism group of separable states in quantum information theory

We show that the linear group of automorphism of Hermitian matrices which preserves the set of separable states is generated by natural automorphisms: change of an orthonormal basis in each tensor factor, partial transpose in each tensor factor, and interchanging two tensor factors of the same dimension. We apply our results to the preservers of the product numerical range.

[1]  Ehud Moshe Baruch,et al.  Linear preservers on spaces of hermitian or real symmetric matrices , 1993 .

[2]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[3]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[4]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[5]  Chi-Kwong Li,et al.  Induced operators on symmetry classes of tensors , 2001 .

[6]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[8]  K. Życzkowski,et al.  Geometry of Quantum States: Index , 2007 .

[9]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[10]  K. Życzkowski,et al.  Geometry of Quantum States , 2007 .

[11]  A. Miranowicz,et al.  Closed formula for the relative entropy of entanglement , 2008, 0805.3134.

[12]  F. Shultz,et al.  Unique decompositions, faces, and automorphisms of separable states , 2009, 0906.1761.

[13]  S. Friedland,et al.  Numerical estimation of the relative entropy of entanglement , 2010 .

[14]  N. Johnston Characterizing operations preserving separability measures via linear preserver problems , 2010, 1008.3633.

[15]  S. Friedland,et al.  An explicit expression for the relative entropy of entanglement in all dimensions , 2010, 1007.4544.

[16]  Jaroslaw Adam Miszczak,et al.  Product numerical range in a space with tensor product structure , 2010, 1008.3482.

[17]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.