Microstructure of Catalyst Layers in PEM Fuel Cells Redefined: A Computational Approach

This work comprises an extensive coarse-grained molecular dynamics study of self-organization processes that define the mesoscopic structure of catalyst layers used in polymer electrolyte fuel cells. The detailed structural analysis focuses on agglomeration of Pt-decorated primary particles of graphitized carbon black, formation of ionomer domains, emergence of the porous network, and formation of interfaces between the distinct phases. Insights obtained enable us to decisively redraw the existing structural picture of the catalyst layer. As a key result, we found that ionomer forms a thin adhesive film, which partially covers agglomerates of Pt/carbon. Densely arranged charged side chains of ionomer form a highly ordered array on the ionomer film surface. The preferential orientation of these charged side chains depends on the surface wetting properties of the agglomerates. As a major consequence, results on ionomer structure and distribution, presented in this work, seem to invalidate the classical electrolyte-flooded agglomerate model that has been widely applied to catalyst layers in polymer electrolyte fuel cells. Instead, the structural analysis provided defines a need for novel models of proton transport, water distribution, and Pt effectiveness that account for the thin-film morphology of ionomer and the specific arrangement of surface groups.

[1]  R Everaers,et al.  Interaction potentials for soft and hard ellipsoids. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  K. Karan,et al.  An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters , 2005 .

[3]  Rajamani Krishna,et al.  United Atom Force Field for Alkanes in Nanoporous Materials , 2004 .

[4]  R. Durand,et al.  Simulations of PEFC cathodes: an effectiveness factor approach , 1997 .

[5]  A. Violi,et al.  A Coarse-Grained Molecular Dynamics Study of Carbon Nanoparticle Aggregation. , 2006, Journal of chemical theory and computation.

[6]  Michael Eikerling,et al.  Self-Organization in Catalyst Layers of Polymer Electrolyte Fuel Cells , 2007 .

[7]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[8]  Yuko Aoyama,et al.  Investigation of the Microstructure in the Catalyst Layer and Effects of Both Perfluorosulfonate Ionomer and PTFE‐Loaded Carbon on the Catalyst Layer of Polymer Electrolyte Fuel Cells , 1995 .

[9]  S. Srinivasan,et al.  Fundamental Equations of Electrochemical Kinetics at Porous Gas‐Diffusion Electrodes , 1967 .

[10]  Gregory A Voth,et al.  Systematic coarse-graining of nanoparticle interactions in molecular dynamics simulation. , 2005, The journal of physical chemistry. B.

[11]  M. Eikerling,et al.  Hydrated arrays of acidic surface groups as model systems for interfacial structure and mechanisms in PEMs. , 2006, The journal of physical chemistry. B.

[12]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[13]  S. Torquato Random Heterogeneous Materials , 2002 .

[14]  Hubert A. Gasteiger,et al.  Instability of Pt ∕ C Electrocatalysts in Proton Exchange Membrane Fuel Cells A Mechanistic Investigation , 2005 .

[15]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[16]  Yue Qi,et al.  Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes. , 2006, The Journal of chemical physics.

[17]  Richard C. Alkire,et al.  Advances in electrochemical science and engineering , 1990 .

[18]  G. Lindbergh,et al.  Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode I. Mathematical Model , 2002 .

[19]  Jiujun Zhang,et al.  PEM Fuel Cell Electrocatalysts and Catalyst Layers , 2008 .

[20]  S. Gottesfeld,et al.  POLYMER ELECTROLYTE FUEL CELLS. , 1997 .

[21]  K. Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics , 2000 .

[22]  Performance of catalyst layers of polymer electrolyte fuel cells: exact solutions , 2002 .

[23]  M. Eikerling,et al.  Ab initio study of surface-mediated proton transfer in polymer electrolyte membranes , 2008 .

[24]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[25]  P. Sui,et al.  Effect of Pt nano-particle size on the microstructure of PEM fuel cell catalyst layers: Insights from molecular dynamics simulations , 2010 .

[26]  Ralf Everaers,et al.  Analytical first derivatives of the RE-squared interaction potential , 2006, J. Comput. Phys..

[27]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[28]  Michael Eikerling,et al.  Water in polymer electrolyte fuel cells: Friend or foe? , 2006 .

[29]  Gregory A Voth,et al.  A multiscale coarse-graining method for biomolecular systems. , 2005, The journal of physical chemistry. B.

[30]  Makoto Uchida,et al.  Effects of Microstructure of Carbon Support in the Catalyst Layer on the Performance of Polymer‐Electrolyte Fuel Cells , 1996 .

[31]  P. R. Silva,et al.  A generalised phenomenological dynamic order–disorder model for polymer electrolytes , 1997 .

[32]  Sanjeev Mukerjee,et al.  Effects of Nafion impregnation on performances of PEMFC electrodes , 1998 .

[33]  Kourosh Malek,et al.  On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. , 2010, ACS applied materials & interfaces.

[34]  Shimshon Gottesfeld,et al.  High Performance Catalyzed Membranes of Ultra‐low Pt Loadings for Polymer Electrolyte Fuel Cells , 1992 .

[35]  G. Gebel,et al.  Neutron and X‐ray Scattering: Suitable Tools for Studying Ionomer Membranes , 2005 .

[36]  A. Kornyshev,et al.  Physical Modeling of Fuel Cells and their Components , 2007 .

[37]  Michael Eikerling,et al.  Water Management in Cathode Catalyst Layers of PEM Fuel Cells A Structure-Based Model , 2006 .

[38]  F. Cardellini,et al.  Study on the formation of Pt/C catalysts by non-oxidized active carbon support and a sulfur-based reducing agent , 2002 .

[39]  E Beerdsen,et al.  Force field parametrization through fitting on inflection points in isotherms. , 2004, Physical review letters.

[40]  Michael Eikerling,et al.  Catalyst Layer Modeling: Structure, Properties and Performance , 2008 .

[41]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[42]  Qianpu Wang,et al.  Nanophase segregation and water dynamics in hydrated Nafion: molecular modeling and experimental validation. , 2008, The Journal of chemical physics.

[43]  O. S. Kisljuk,et al.  An algorithm to find channels and cavities within protein crystals. , 1994, Journal of molecular graphics.

[44]  David Chandler,et al.  Transition path sampling: throwing ropes over rough mountain passes, in the dark. , 2002, Annual review of physical chemistry.

[45]  Hardcover,et al.  Carbon: Electrochemical and Physicochemical Properties , 1988 .

[46]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[47]  P. Stonehart,et al.  The use of porous electrodes to obtain kinetic rate constants for rapid reactions and adsorption isotherms of poisons , 1976 .

[48]  M. Eikerling,et al.  Electrochemical Materials for PEM Fuel Cells: Insights from Physical Theory and Simulation , 2008 .

[49]  Philippe Sautet,et al.  Computational methods in catalysis and materials science , 2009 .

[50]  T. Navessin,et al.  Factors Influencing Electrochemical Properties and Performance of Hydrocarbon-Based Electrolyte PEMFC Catalyst Layers , 2009 .

[51]  Kunal Karan Assessment of transport-limited catalyst utilization for engineering of ultra-low Pt loading polymer electrolyte fuel cell anode , 2007 .

[52]  A. Kornyshev,et al.  Proton-Conducting Polymer Electrolyte Membranes: Water and Structure in Charge , 2008 .

[53]  Marcelo Carmo,et al.  Physical and electrochemical evaluation of commercial carbon black as electrocatalysts supports for DMFC applications , 2007 .

[54]  E. Antolini Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells , 2003 .

[55]  Yuko Aoyama,et al.  New Preparation Method for Polymer-Electrolyte Fuel-Cells , 1995 .

[56]  S. Holdcroft,et al.  Properties of Gas Diffusion Electrodes Containing Sulfonated Poly(ether ether ketone) , 2005 .

[57]  S. Srinivasan,et al.  Theory of a thin film model of porous gas-diffusion electrodes☆ , 1967 .

[58]  Michael Eikerling,et al.  Functionally graded cathode catalyst layers for polymer electrolyte fuel cells - I. Theoretical modeling , 2004 .