Diamond Magnetometry of Meissner Currents in a Superconducting Film

We study magnetic field penetration into a thin film made of a superconducting niobium. Imaging of magnetic field is performed by optically detecting magnetic resonances of negatively charged nitrogen-vacancy defects inside a single crystal diamond, which is attached to the niobium film under study. The experimental results are compared with theoretical predictions based on the critical state model, and good agreement is obtained.

[1]  Combined excitation of an optically detected magnetic resonance in nitrogen-vacancy centers in diamond for precision measurement of the components of a magnetic field vector , 2015 .

[2]  A. Vershovskii,et al.  Micro-scale three-component quantum magnetometer based on nitrogen-vacancy color centers in diamond crystal , 2015 .

[3]  M. Huber,et al.  Probing dynamics and pinning of single vortices in superconductors at nanometer scales , 2014, Scientific Reports.

[4]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[5]  D. Budker,et al.  Diamond Magnetometry of Superconducting Thin Films , 2013, 1308.2689.

[6]  Eli Zeldov,et al.  A scanning superconducting quantum interference device with single electron spin sensitivity. , 2013, Nature nanotechnology.

[7]  K. Davey,et al.  Simulating the Trapped B Field in Bulk Superconductors Using a Mutual Inductance Coupling Technique , 2013, IEEE Transactions on Magnetics.

[8]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[9]  C. Navau,et al.  Macroscopic Modeling of Magnetization and Levitation of Hard Type-II Superconductors: The Critical-State Model , 2013, IEEE Transactions on Applied Superconductivity.

[10]  M. D. Lukin,et al.  Nanoscale magnetic imaging of a single electron spin under ambient conditions , 2012, Nature Physics.

[11]  M. Plenio,et al.  Long-lived driven solid-state quantum memory , 2012, 1206.4430.

[12]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[13]  J. Manton,et al.  High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond , 2012, Scientific Reports.

[14]  M. Lukin,et al.  Efficient photon detection from color centers in a diamond optical waveguide , 2012, 1201.0674.

[15]  D. Budker,et al.  Electron spin resonance shift and linewidth broadening of nitrogen-vacancy centers in diamond as a function of electron irradiation dose. , 2009, Applied physics letters.

[16]  J. Tetienne,et al.  Nanoscale magnetic field mapping with a single spin scanning probe magnetometer , 2011, 1108.4438.

[17]  D. Maclaurin,et al.  Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. , 2011, Nature nanotechnology.

[18]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[19]  C. Navau,et al.  Tunability of the critical-current density in superconductor-ferromagnet hybrids , 2011 .

[20]  Lukin,et al.  Magnetic field imaging with nitrogen-vacancy ensembles , 2011, 1207.3339.

[21]  L. Schultz,et al.  Quantitative assessment of pinning forces and magnetic penetration depth in NbN thin films from complementary magnetic force microscopy and transport measurements , 2011, 1101.4128.

[22]  J. Chu,et al.  Local measurement of the superfluid density in the pnictide superconductor Ba(Fe(1-x)Co(x))(2)As(2) across the superconducting dome. , 2010, Physical review letters.

[23]  Dmitry Budker,et al.  Detection of the Meissner effect with a diamond magnetometer , 2009, 0911.2533.

[24]  D. Budker,et al.  Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond , 2010, 1009.4747.

[25]  H. Hosono,et al.  Enhancement of the critical temperature of the pnictide superconductor LaFeAsO1-xFx studied via75As NMR under pressure , 2010 .

[26]  F. Dolde,et al.  High sensitivity magnetic imaging using an array of spins in diamond. , 2010, The Review of scientific instruments.

[27]  D Budker,et al.  Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. , 2009, Physical review letters.

[28]  M. W. Johnson,et al.  A scalable readout system for a superconducting adiabatic quantum optimization system , 2009, 0905.0891.

[29]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[30]  K. Hashimoto,et al.  Lower critical fields of superconducting PrFeAsO 1 − y single crystals , 2008, 0811.3669.

[31]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[32]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[33]  H. Rogalla,et al.  Vortex trapping and expulsion in thin-film YBa2Cu3O7−δ strips , 2008, 0801.2283.

[34]  D. Rugar,et al.  Nuclear magnetic resonance imaging with 90-nm resolution. , 2007, Nature nanotechnology.

[35]  Matthew Sellars,et al.  Measurement of the optically induced spin polarisation of N-V centres in diamond , 2006 .

[36]  D. Young,et al.  Magneto-optical studies of flux penetration in super-hard Nb wire , 2005 .

[37]  K. H. Kim,et al.  Geometrical barriers and lower critical field in MgB2 single crystals , 2004 .

[38]  Super-Hard Superconductivity , 2004, cond-mat/0410238.

[39]  K. H. Kim,et al.  Anisotropies of the lower and upper critical fields in MgB2 single crystals. , 2004, Physical review letters.

[40]  A. Grigorenko,et al.  Comparison of Magneto-Optical Imaging with Other Local Magnetic Probes , 2004 .

[41]  C. Jooss,et al.  Magneto-optical studies of current distributions in high-Tc superconductors , 2002 .

[42]  D. Mailly,et al.  Micro-superconducting quantum interference device characteristics , 2002 .

[43]  A. Bobyl,et al.  Symmetry of the remanent-state flux distribution in superconducting thin strips: Probing the critical state , 2000, cond-mat/0012476.

[44]  Y. Myasoedov,et al.  Imaging the vortex-lattice melting process in the presence of disorder , 2000, Nature.

[45]  John P. Wikswo,et al.  SCANNING SQUID MICROSCOPY , 1999 .

[46]  S. Bending,et al.  Local magnetic probes of superconductors , 1999 .

[47]  H. Shtrikman,et al.  Measurement of the magnetic induction vector in superconductors using a double-layer Hall sensor array , 1998 .

[48]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[49]  Shen,et al.  Direct observation of the current distribution in thin superconducting strips using magneto-optic imaging. , 1996, Physical review. B, Condensed matter.

[50]  Clem,et al.  Theory of flux penetration into thin films with field-dependent critical current. , 1996, Physical review. B, Condensed matter.

[51]  A. Oral,et al.  Scanning Hall probe microscopy of superconductors and magnetic materials , 1996 .

[52]  H. Shtrikman,et al.  Thermodynamic observation of first-order vortex-lattice melting transition in Bi2Sr2CaCu2O8 , 1995, Nature.

[53]  Clem,et al.  Magnetization and transport currents in thin superconducting films. , 1994, Physical review. B, Condensed matter.

[54]  E. Brandt,et al.  Type-II Superconducting Strip in Perpendicular Magnetic Field , 1993 .

[55]  V. Vlasko-Vlasov,et al.  Studies of HTSC crystal magnetization features using indicator magnetooptic films with in-plane anisotropy , 1992 .

[56]  Hans D. Hallen,et al.  Scanning Hall probe microscopy , 1992 .

[57]  Physical Review Letters 63 , 1989 .

[58]  R. Huebener,et al.  Critical current density in superconducting niobium films , 1975 .

[59]  J. E. Evetts,et al.  Flux vortices and transport currents in type II superconductors , 2001 .

[60]  W. W. Webb,et al.  Magnetization of Superconducting Nb-25%Zr Wire , 1964 .

[61]  C. P. Bean,et al.  Magnetization of High-Field Superconductors , 1964 .

[62]  C. F. Hempstead,et al.  Magnetization and Critical Supercurrents , 1963 .

[63]  C. P. Bean Magnetization of hard superconductors , 1962 .